Math 872 Algebraic Topology

Homework # 2

Starred (*) problems due Thursday, February 1

- 6. Show that if there are maps $f: X \to Y$ and $g, h: Y \to X$ such that $f \circ g: Y \to Y$ and $h \circ f: X \to X$ are homotopic to I_Y and I_X , respectively, then f is a homotopy equivalence. Show that the same is true if $f \circ g$ and $h \circ f$ are homotopy equivalences.
- (*) 7. Show that if X is a CW complex, $A, B \subseteq X$ are subcomplexes, $A \cup B = X$, and A, B and $A \cap B$ are contractible, then X is contractible.
 - 8. Show that if $f : \partial D^n \to X$ is the attaching map of an *n*-cell D^n , with $n \ge 3$, then the inclusion $X \hookrightarrow X \cup_f D^n$ induces an isomorphism on π_1 . Show that the same is true if we attach any (finite or infinite) collection of $n \ge 3$ cells.
- (*) 9. Let X = the space obtained from a cube $J^3 = J \times J \times J$, J = [-1, 1], by gluing opposite square faces to one another with a 90-degree righthand twist (e.g., glue $J \times J \times \{-1\}$ to $J \times J \times \{1\}$ by the map $(x, y, -1) \mapsto (y, -x, 1)$. Describe a CW structure for X and compute a presentation for $\pi_1(X)$.
 - 10. Starting with a 2-disk, D^2 , with two small sub-disks deleted, show that there are essentially only two spaces obtained by identifying each of the two interior boundary circles to ∂D^2 by homeomorphisms. Compute presentations for the fondamental groups of each, and (by abelianizing) show that the two groups are not isomorphic, so the two spaces are not homotopy equivalent.