Math 872 Algebraic Topology

Problem Set # 4

Starred (*) problems due Tuesday, February 27

- 16. Show that $X = \mathbb{R}^2 \setminus \mathbb{Q}^2 \subseteq \mathbb{R}^2$ is path connected, and $\pi_1(X)$ is uncountable. (I.e., find uncountably many loops no two of which are homotopic to one another.)
- 17. Show that if $p: \widetilde{X} \to X$ is a covering map and $A \subseteq X$ is a subspace if X, then $p|_{p^{-1}(A)}: p^{-1}(A) \to A$ is also a covering map.
- (*) 18. Find a pair of (finite) graphs (= 1-dim'l CW complexes with finitely many 0- and 1-cells) X₁ and X₂ that have a common finite-sheeted covering space p₁ : X → X₁ , p₂ : X → X₂, but do not commonly cover another space, i.e., they are not both covering spaces of a single space Y.
 - **19.** Show that if a group G acts freely $(x = gx \Rightarrow g = 1)$ and properly discontinuously (for all $x \in X$ there is a nbhd \mathcal{U} of x such that $\{g : g(\mathcal{U}) \cap \mathcal{U} \neq \emptyset\}$ is finite) on a space X, then the quotient map $p: X \to X/G = X/\{x \sim gx \text{ for all } g \in G\}$ given by p(x) = [x] is a covering map. In particular if X is Hausdorff and G is a finite group acting freely on X, then $p: X \to X/G$ is a covering map.

[Pointless remark: some people would write our quotient space as $G \setminus X$, since G is acting on the left, and so is being quotiented out from the left, although the Wikipedia entry on the matter, $http://en.wikipedia.org/wiki/Group_action$, agrees with us in this. Besides, as I just learned when TeXing this up, TeX doesn't like \ as a symbol, it asked me what the macro "\X" was supposed to mean ...?]

- (*) 20. (Using covering spaces,) show that a finitely generated group G has only finitely many subgroups of a given index n. (Hint: do this first for a free group F(m), then use the existence of a surjective homomorphism $\varphi: F(m) \to G$ for a suitable m.)
 - **21.** Show, using covering spaces, that the fundamental group of the closed orientable surface Σ of genus 2 is not abelian. (Hint: to show that for loops γ, η that $\gamma * \eta * \overline{\gamma} * \overline{\eta}$ isn't trivial, show that it (at least once) does not lift to a loop.)