Math 872 Algebraic Topology

Problem Set # 6

Starred (*) problems due Thursday, March 29

- (*) 27. Show that for chain maps f, g between chain complexes $\mathcal{A} = \{A_n\}, \mathcal{B} = \{B_n\}$, the relation "f and g are chain homotopic" is an equivalence relation.
 - **28.** Show that if $A \subseteq X$, then the inclusion map $i : A \to X$ induces an isomorphism on homology groups $\Leftrightarrow H_n(X, A) = 0$ for all $n \ge 0$.
 - **29.** Show that if a short exact sequence $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ splits, that is, there is a map $\gamma : B \to A$ with $\gamma \circ \alpha = I$, then the map $\varphi : B \to A \oplus C$ given by $b \mapsto (\gamma(b), \beta(b))$, is an isomorphism.

[This is part of the Splitting Lemma, proved in Hatcher, p.147. Splitting is equivalent to the existence of $\delta: C \to B$ satisfying $\beta \circ \delta = I$, but this is irrelevant to the question above.]

(*) 30. Show that if A ⊆ X and r : X → A is a retraction, then for every n, H_n(X) ≅ H_n(A) ⊕ H_n(X, A).
[Hint: show that the (piece of) the long exact homology sequence H_n(A) → H_n(X) → H_n(X, A) is "really" 0 → H_n(A) → H_n(X) → H_n(X, A) → 0, and splits.]

31. Prove the Snake Lemma: given a diagram of abelian groups

with the horizontal rows exact and where each rectangle commutes, then there are induced maps and a connecting homomorphism making the sequence

 $0 \to \ker \alpha \to \ker \beta \to \ker \gamma \to \operatorname{coker} \alpha \to \operatorname{coker} \beta \to \operatorname{coker} \gamma \to 0$ exact. (For $f: R \to S$, $\operatorname{coker} f = S/\operatorname{im}(f)$.)

32. Compute the singular homology groups of the topologist's sine curve

$$X = \{(x, \sin(1/x) : 0 < x \le 1\} \cup (\{0\} \times [-1, 1])\}$$