Math 872 Algebraic Topology

Problem Set # 7

Starred (*) problems due Thursday, April 5

- (*) 33. Find examples of spaces and subspaces $A_0 \subseteq X_0$ and $A_1 \subseteq X_1$ so that $H_*(X_0) \cong H_*(X_1)$ and $H_*(A_0) \cong H_*(A_1)$, but $H_*(X_0, A_0) \ncong H_*(X_1, A_1)$. (If you want to make it more challenging, find examples with all of the spaces path-connected? Note that Problem #35 gives a hint on how <u>not</u> to solve this problem...)
 - **34.** Show that if $A \subseteq X$ and the identity map $I: X \to X$ is homotopic to a map $f: X \to X$ with $f(X) \subseteq A$, then for every n, $H_n(A) \cong H_n(X) \oplus H_{n+1}(X, A)$. (So A has more "holes" than X does...)
 - **35.** (a): Let $f: (X, A) \to (Y, B)$ be a map of pairs such that both $f: X \to Y$ and $f: A \to B$ are homotopy equivalences. Show that the induced map $f_*: H_n(X, A) \to H_n(Y, B)$ is an isomorphism for all n.

(b): Show that the inclusion map $\iota : (D^n, \partial D^n) \to (D^n, D^n \setminus \{0\})$ satisfies the hypotheses of (a), but is <u>not</u> a *homotopy of pairs*, that is, there is <u>not</u> a map $f : (D^n, D^n \setminus \{0\}) \to (D^n, \partial D^n)$ so that $f \circ \iota$ and $\iota \circ f$ are both homotopic, as maps of pairs, to the identity maps.

36. Compute the singular homology groups of the pseudo-projective planes P_n , $n \ge 2$, shown below, where the boundary has been subdivided into n equal arcs.

- (*) 37. For a space X the cone on X is the quotient space
 - $cX = X \times I/\{(x,0) \sim (y,0) : x, y \in X\} = X \times I/X \times \{0\}$, and the suspension of X is the quotient space $SX = X \times I/\{(x,0) \sim (y,0), (x,1) \sim (y,1) : x, y \in X\}$, which can be thought of as two cones on X glued along their common copy of X. Show that for any path connected space X, $\widetilde{H}_i(cX) = 0$ and $\widetilde{H}_i(SX) \cong \widetilde{H}_{i-1}(X)$ for all *i*.
 - **38.** Show that, for any collection of finitely generated abelian groups G_1, \ldots, G_n , there is a path-connected space X with $\widetilde{H}_i(X) \cong G_i$ for all $i = 1, \ldots, n$ and $\widetilde{H}_i(X) = 0$ for all other *i*.