Math 872 Algebraic Topology

Problem Set # 8

Starred (*) problems due Thursday, April 13

39. Giving the *n*-simplex $X = \Delta^n$ its standard Δ -complex structure, show that the *k*-skeleton of X has homology

$$\widetilde{H}_i(X^{(k)}) = \begin{cases} \mathbb{Z}^{r(k,n)} & \text{if } i = k \\ 0 & \text{otherwise} \end{cases}$$

where $r(k, n) = \binom{n}{k+1}$.

(Hint: our computations preliminary to the proof of "cellular = singular" will help.)

(*) 40. Show that if the sequence

 $0 \to C_n \to C_{n-1} \to \cdots \to C_1 \to C_0 \to 0$

is exact, then $\sum (-1)^i \operatorname{rank} C_i = 0$. (Hint: pretend it's a chain complex...)

- (*) 41. Show that if $\{\mathcal{U}, \mathcal{V}\}$ is an open cover of X and $\mathcal{U} \cap \mathcal{V}, \mathcal{U}, \mathcal{V}$ and X all have $\bigoplus_i H_i(\text{blah})$ of finite rank, then $\chi(X) = \chi(\mathcal{U}) + \chi(\mathcal{V}) \chi(\mathcal{U} \cap \mathcal{V})$.
 - 42. Show that if \widetilde{X} is an *n*-sheeted covering space of the finite CW-complex X, then $\chi(\widetilde{X}) = n\chi(X)$. Conclude that the only non-trivial finite group that can act on an evendimensional sphere S^{2k} without fixed points is \mathbb{Z}_2 . (Skip the hard part: the quotient by the group action is a CW-complex...)
 - **43.** Show that $H_i(X \times S^n) \cong H_i(X) \oplus H_{i-n}(X)$ for every *i*; here $H_i(X) = 0$ if i < 0. [One approach: show that $H_i(X \times S^n) \cong H_i(X) \oplus H_i(X \times S^n, X \times D^n_+)$ (Problem #30 will help), and that $H_i(X \times S^n, X \times D^n_+) \cong H_{i-1}(X \times S^{n-1}, X \times D^{n-1}_+)$ by excision and the long exact sequence of the triple $(X \times D^{n-1}_+, X \times S^{n-1}, X \times D^n_-)$. Hatcher, p.158, # 36 gives a different approach.]