
Math 872 Algebraic Topology

Running lecture notes

First a word from our sponsor...

Algebraic topology is an umbrella term for that part or topology which uses algebraic tools
to study and answer topological problems. The most basic problem in topology is, given
two topological spaces X and Y , to determine whether or not they are homeomorphic.
Other basic questions are to understand the different ways (if any) that one space can be
embedded in another (i.e., the ways in which X can be homeomorphic to a subspace of Y ),
and to understand the continuous maps from X to Y . In all of these tools from alebraic
topology have a role to play.

At its heart the idea to assign to each topological space (in some reasonable collection
(read: category) of spaces that you are interested in) an algebraic object (group, ring,
field, module...) in some intelligent way. Typically, to tie the construction to the topology
on X , the object is built using continuous functions into or out of X . That is, after all,
what a topology is really good for; it tells you what maps are continuous, i.e., aren’t
ripping your space apart. A construction which “really” only uses the topology on X (and
not something more) will have the property that homeomorphic spaces have isomorphic
objects assigned to them (you can almost take this as a definition of “really using the
topology”). Then the algebraic objects can be used to distinguish spaces; if the objects
aren’t isomorphic, then the spaces they came from can’t be homeomorphic. The basic
idea is that distinguishing groups from one another is “easier” than distinguishing spaces;
whether or not this is really true we will discuss at a later date! But, for example, finitely
generated abelian groups are easy to distinguish (when given to you as a direct sum of
cyclic groups, for example), which can be turned into a method for distinguishing spaces,
when our method assigns such groups to spaces.

This kind of process can tell us that two spaces are different, if the algebraic invariants
that we assign to the spaces are different, that is enough. But it doesn’t run the other
way; if the algebraic invariants are the same, we cannot conclude that the spaces are the
same. (Dumb example: we assign to every topological space the field with two elements.
Homeomorphic spaces have the same associated field, but...) But this doesn’t stop us from
continuing to try to find invariants that continue to do better at distinguishing spaces....

In this course we will explore two basic approaches to building algebraic invariants: ho-
motopy theory and homology theory. Each builds a sequence of groups (all but one of
them, the first homotopy group, or fundamental group, are abelian) which serve as alge-
braic invariants of the space. History has shown us that the homotopy groups, typically,
are more powerful; they are better at distinguishing spaces. They pay for this, however by
being more difficult to compute in practice. For example, there is no general formula for
the homotopy groups of the 2-sphere S2; all that is generally known is that all but two are
finite, and all but one (?) are non-trivial. The first few hundred, probably, have actually
been computed. We will focus mostly on the fundamental group π1(X); its computation,
properties, and applications. The fundamental group has found its way into a wide variety
of mathematical fields (essentially, anywhere that continuity has?).
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Homology groups, on the other hand, are typically “easier” to compute, at least once
you have gotten some theory out of the way! They pay for this by being less adept at
distinguishing spaces. At least straight out of the box; a lot of effort has been invested
in finding more subtle ways to use the techniques of homology theory to winkle ever
more detailed information out of a topological space. Homology groups are designed to be
abelian (for the higher homotopy groups this is more a matter of some delightful accident);
literally, they are each the quotient of a free abelian group by a subgroup. So the main
computational tool is some fairly straighforward linear algebra.

Ultimately our goal is to construct these two theories, explore their properties, and then
use them to prove some topological results that, in the end, one might never have guessed
that algebraic techniques would have played a role in proving. Some sample results:

There is a (continuous) map from the surface of genus 3, Σ3 to the surface of genus 2, Σ2,
such that every point inverse is finite. There is no such map Σ2 → Σ3 (or Σ4 → Σ3 or...).
One can in fact give a precise statement of when such a map Σn → Σm exists; it is that
m − 1|n − 1 .
The real projective plane RP 2 cannot embed in R3.
Invariance of Domain: If U ⊆ R

n is open and f : U → R
n is continuous and injective,

then f(U) ⊆ Rn is open. (I.e., being a domain, an open subset of Rn, is invariant under
continuous injections.)

There is one topological fact which we will use constantly which you might not have seen
in your point-set topology class (although it may have come up in an analysis class?): the
Lebesgue Number Theorem. If (X, d) is a compact metric space (in our applications, it is
always a compact subset of Euclidean space), and {Ui} is an open cover of X , then there is
an ε > 0 so that for every x ∈ X , its ε-neighborhood Nd(x, ε) is contained in Ui for some i.
For if not, then for every n ∈ N there is an xn ∈ X whose 1/n-neighborhood is contained
in no Ui; that is, for every i ∈ I, there is an xn,i with d(xn, xn,i) < 1/n and xn,i /∈ Ui, so
xn,i ∈ Ci = X \Ui, a closed set. But since X is compact, there is a convergent subsequence
of the xn; xnk

→ y ∈ X . [Proof: if not, then no point is the limit of a subsequence, so for
every x ∈ X there is an ε(x) > 0 and an N = N(x) so that n ≥ N implies xn /∈ Nd(x, ε(x).
But these neighborhoods cover X , so a finite number of them do; for any n gretaer than the
maximum of the associated N(x)’s xn lies in none of the neighborhoods, a contradiction,
since xn ∈ X = the union of theose neighborhoods.] But then since d(xnk

, y) → 0 and
d(xnk

, xnk,i) → 0, for every i the xnk,i also converge to y; since the xnk,i all lie in the
closed set Ci, so does y. So y ∈ Ci for all i, so y /∈ Ui for all i, a contradication, since the
Ui cover X . So some ε > 0, a Lebesgue number for the covering, must exist.
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The fundamental group:

One of the main themes of topology is that a space X can be studied by looking at maps
(= continuous functions) of “useful” spaces into X . Maps provide the means to explore a
space, and literally map out the topology of the space. The most basic useful space to use
is an interval I = [0, 1]; understanding how intervals map into a space provides information
on the many ways to get from “here” to “there”. This is the basis for the fundamental
group.
The key to understanding the fundamental group is to understand how you could conceiv-
ably turn maps of intervals (i.e., paths) into a group, i.e., how to multiply them. That is,
how do you take two maps f, g : I → X and produce a single map f · g : I → X ? After
fussing a bit, you would probably hit upon what Poincaré did; two intervals glued end to
end form an interval; so two maps glued end to end build a map. If you can do the gluing;
that requires f(1) = g(0) in order to be well-defined. In order to multiply any two paths
in any order (so as to form a group) we need to impose a compatibility condition, that is
we need to assume that all paths have compatible endpoints, so we focus on loops, that
is paths f : [0, 1] → X so that f(0) = f(1) = x0 ∈ X for some fixed basepoint x0 ∈ X .
These can be concatenated in any order;

f ∗ g(t) =
{

f(2t), if t ≤ 1/2
g(2t − 1) if t ≥ 1/2

runs across f first, and then g. This gives us a mutliplication on the loops at x0. But this
really can’t be turned into a group; we could never find an appropriate identity element,
since the product of f with anything contains a copy of f in it, so our identity would have
to have a copy of every loop in it?

The solution is to define our group elements to be equivalence classes of loops, so that
our identity element can “have” a copy of every map f in it! The other point is that
by making elements of the group “big” (having lots of representatives), this will make the
group ‘smaller”, and more manageable. Finally, by letting many loops really be the “same”,
we can focus on more important, global, features of a space rather than inessential local
information. The equivalence relation we use is homotopy, that us, continuous deformation.
In general, two maps f, g : Y → X are homotopic if there is a map H : Y × I → X such
that H(y, 0) = f(y) and H(y, 1) = g(y) for every y ∈ Y . That is, the map f

∐
g :

Y × {0, 1} → X extends to a map on Y × I. There is also a notion of homotopy for a
map of pairs f : (Y, B) → (x, A) (that is, f(B) ⊆ A), requiring that H is also a map of
pairs, H(B × I) ⊆ A. A loop at x0 is really a map of pairs f : (I, ∂I) → (X, {x0}), and
the elements of the fundamental group π1(X, x0) will be equivalence classes of loops at x0,
under the equivalence relation of homotopy as maps of pairs. We of course need to show
that homotopy is an equivalvence relation, that is, f � f , if f � g then g � f , and if f � g
and g � h then f � h. For each of these it is fairly straightforward to build the required
homotopy (H(t, s) = f(t) , K(t, s) = H((t, 1 − s), and L(t, s) = the concatenation of two
homotopies H and K, on the second variable; the Pasting Lemma assures its continuity).

With this dealt with, elements are equivalence classes [f ] of loops at x0, we define our
multiplication to be [f ] · [g] = [f ∗ g]. For this to be well-defined, we need to check that
if f � f ′ and g � g′, then f ∗ g � f ′ ∗ g′, but the required homotopy can be built by
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concatenating the hypothesized homotopies, along the first variable. But now, since the
elements are so big, we can construct a meaningful identity element, and verify that we
under this multiplication we have a group. The identity element is the loop which does
nothing, that is, the equivalence class containing the constant map c0 at x0; e = [c0]. The
inverse [f ]−1 is [f ], where f(t) = f(1−t) is f run in the reverse direction. The verifications
f ∗ c0 � f � c0 ∗ f and f ∗ f � c0 � f ∗ f can be verified by building the appropriate
homotopies:

H(t, s) =
{

f(2t/(s + 1)), if t ≤ (s + 1)/2
x0, if t ≥ (s + 1)/2

H(t, s) =
{

x0, if t ≤ s/2
f((t − s/2)/(1− s/2)), if t ≥ s/2

H(t, s) =




x0, if t ≤ s/2
f(2t − s), if s/2 ≤ t ≤ 1/2
f(2 − s − 2t), if 1/2 ≤ t ≤ 1 − s/2
x0, if 1 − s/2 ≤ t ≤ 1

H(t, s) =




x0, if t ≤ (1 − s)/2
f(2 − s − 2t), if (1 − s)/2 ≤ t ≤ 1/2
f(2t − s), if 1/2 ≤ t ≤ (1 + s)/2
x0, if (1 + s)/2 ≤ t ≤ 1

These give us that g · e = g = e · g and g · g−1 = e = g1 · g for every g ∈ π1(X, x0).
Associativity, g · (h · k) = (g · h) · k, by another homotopy: if g = [α], h = [β] and k = [γ],
then α ∗ (β ∗ γ) � (α ∗ β) ∗ γ via the homotopy

H(t, s) =




α(4t/(2 − s)), if t ≤ (2 − s)/4
β(4t − 2 + s), if (2 − s)/4 ≤ t ≥ (3 − s)/4
γ((4t− 3 + s)/(s + 1)), if t ≥ (3 − s)/4

The Pasting Lemma assures that all of these maps are continuous. All of these homotopies
are probably best understood pictorially, looking at what is happening in each individual
region of definition.

So with this (well-defined) multiplication, we have an associative product on π1(X, x0)
with an identity and two-sided inverse, making π1(X, x0) a group, the fundamental group
of X based at x0. This group literally enumerates the number of different ways to walk
around the space X and return to our starting point, where two ways are different if one
cannot be continuously deformed to the other. The fact that this collection of different
ways together form a group under concatenation provides extra structure, giving us a
better chance to be able to compute this object when we need to.
But just jumping in and computing it turns out to be rather difficult, at least straight
from the definition. How do you really decide when two loops are homotopic? What we
need to do is to erect a theory around our basic definitions, to give us a way to work with
them and to illuminate their importance and utility.
Several basic properties are important to the utility of the fundamental group. The first
is that if f : (X, x0) → (Y, y0) is a map of pairs, then there is an induced homomorphism
f∗ : π1(X, x0) → π1(Y, y0) given by f∗[γ] = [f ◦ γ]. Since γ � β implies f ◦ γ � f ◦ β via
K(t, s) = f(H(t, s)), the map is well-defined, and since f ◦ (γ ∗β) = (f ◦ γ) ∗ (f ◦β), it is a
homomorphism. Further, (f ◦ g)∗ = f∗ ◦ g∗ follows directly, as does (IX)∗ = Iπ1(X). From
which it follows that if f : X → Y is a homeomorphism, then f∗ : π1(X, x0) → π1(Y, f(x0))
is an isomorphism. So homeomorphic spaces have isomorphic fundamental groups; the
fundamental group is a homeomorphism invariant.
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In many instances, we supress the basepoint x0 in our work with the fundamental group.
The basis for doing this is that if x0, x1 ∈ X and γ : I → X is a path in X with
γ(0) = x0 and γ(1) = x1, then given a loop f at x0, γ ∗ f ∗ γ is a loop at x1. The
map F = Fγ : π1(X, x0) → π1(X, x1) given by F ([f ]) = [γ ∗ f ∗ γ] is well-defined and
provides an isomorphism between the two groups, with inverse F−1([g]) = [γ ∗ g ∗ γ].
(The relevant homotopies are readily constructed.) So for a path-connected space, the
fundamental groups based at any two points are isomorphic. So we can sensibly talk
about the fundamental group of a path-connected space, without mentioning basepoints.
(There needn’t be a canonical isomorphism between the groups; a different path between
two basepoints might yield a different isomorphism. This is occasionally a very important
consideration!)

An important combination of these two facts allows us to understand the behavior of
induced maps under homotopy. If f, g : X → Y are homotopic maps, via a homotopy H,
and x0 is a baspoint in X , let γ(t) = H(x0, t) be the path in Y traced out by x0 under
the homotopy, and set y0 = γ(0), y1 = γ(1). Then f : (X, x0) → (Y, y0) and g : (X, x0) →
(Y, y1) as maps of pairs, and we have an isomorphism Fγ : π1(Y, y0) → π1(Y, y1). Then
we can see that g∗ = Fγ ◦ f∗ : π1(X, x0) → π1(Y, y1), by properly “reparametrizing” the
homotopy H: given a loop α : (I, ∂I) → (X, x0), g ◦ α � γ ∗ (f ◦ α) ∗ γ via the homotopy
K(s, t) = H(α(t), s) together with a map of the square I × I to itself which takes the top
edge to itself and stretches the bottom edge around the remaining three edges (thereby
taking the two vertical edges each to the endpoints of the top edge). Such a map is readily
constructed, although a formula for it might be a bit ugly...

This has special meaning when one of f, g is a homeomorphism (think: the identity); then
since the homeo induces an iso in π1 and Fγ is an iso, the other map induces an iso on π1, as
well. Another special case is when the homotopy between f and g is basepoint-preserving;
that is, γ is a constant map. Then Fγ = Iπ1 , since we can smooth out the constant maps
we pre- and post-append to a given loop to return us to the given loop, as we did above
in verifying that the constant loop is the identity element in pi1. So basepoint-preserving
homotopic maps induce the same map on π1.

This line of thought reaches its logical conclusion with the introduction of homotopy equiv-
alences. Two spaces X, Y are homotopy equivalent if there are maps f : X → Y and
g : Y → X so that f ◦ g : Y → Y and g ◦ f : X → X are both homotopic to the identity. It
is straighforward (as in the discussion of homotopy above) that “are homotopy equivalent”
is an equivalence relation (hence the name). Each of f and g are called homotopy equiv-
alences. The discussions above combine to give the result: if f : X → Y is a homotopy
equivalence, then f∗ : π1(X, x0) → π1(Y, f(x0)) is an isomorphism. This is because the
compositions f∗ ◦ g∗ = (f ◦ g)∗ and g∗ ◦ f∗ = (g ◦ f)∗ are isomorphisms, so the first is sur-
jective (hence f∗ is surjective) and the second is injective (so f∗ is injective). So homotopy
equivalent spaces have isomorphic fundamental groups.

A subset a ⊆ X is a retract of X if there is a map r : X → A so that r(a) = a for all a ∈ A.
That is, for ι : A → X the inclusion map, r ◦ ι = IA. A is a deformation retract of X if in
addition ι ◦ r : X → X is homotopic to the identity. r is a strong deformation retraction
if this homotopy leaves every element of A fixed; H(z, t) = a for all a ∈ A. If r is a
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deformation retraction, then it is a homotopy equivalence (we take the identity homotopy
for r ◦ ι). So the inclusion ι : A → X induces an isomorphism on π1. This idea simplifies
many computations, by allowing us to compute π1(A) instead of π1(X). FOr example, Rn

deformation retracts to the origin x0 = 0; the homotopy H(x, t) = tx interpolates between
the identity and ι ◦ r = cx0 . Since π1(x0) = {1} (there is only one map γ : I → {x0}), we
deduce that π1(Rn) = 1. The same is true for disks Dn. More generally, a space is called
contractible if it is homotopy equivalent to a point; every contractible space has trivial
fundamental group.

A loop is map γ : I → X with γ(0) = γ(1) = x0; it therefore decends to a well-defined
map of the quotient space I/0, 1 ∼= S1 to X , and so a loop can be thought of as a map
from the unit circle (S1, 1) → (X, x0). Elements of π1(X, x0) could have been defined as
equivalence classes of such maps under homotopy of pairs (it is not difficult to see how to
lift such a homotopy to a homotopy (I × I, ∂I × I) → (X, x0)). The multiplication is a
little more convoluted to work out; the reader is invited to do so. From this perspective,
though, understanding what the identity element looks like has a more geometric feel:
γ : S1 → X represents the identity in π1(X) ⇔ γ extends to a map Γ : D2 → X ( i.e.,
Γ|∂D2 = γ), where D2 is the unit disk in R2. The basic idea is that if γ is trivial, there is
a homotopy S1 × I → X which on S1 × {0} is γ and which sends Y = {1} × I ∪ S1 × {1}
to x0. The homotopy descends to a map from S1 × I, with Y crushed to a point, to X .
But S1 × I/Y is homeomorphic to D2, with S1 × {0} being sent to ∂D2; the composition
D2 → S1 × I/Y → X is the desired extension.
In a similar vein, two paths α, β : I → X joining the same pair of points x0, x1 ∈ X are
homotopic rel endpoints (i.e., the maps (I∂I) → (X, {x0, x1}) are homotopic as maps of
pairs) ⇔ the loop α ∗ β is trivial in π1(X, x0). (The extension to D2 is built from the
homotopy by crushing each of the vertical boundary segments to points.) So, for example,
in a contractible space, any two paths between the same two points are homotopic rel
endpoints.

The fundamental group of the circle:

Our first really non-trivial computation is to determine the fundamental group of the circle
S1. Since S1 is path-connected, the answer is independent of basepoint, so we will choose
x0 = (1, 0) ∈ S! ⊆ R2. First the answer: π1(S1) ∼= Z . The proof is a little involved, but it
will introduce several basic ideas that will become central to the development of our more
general theory.
The basic idea is, given an element [γ] ∈ π1(S1), to find a (more or less) canonical repre-
sentative α ∈ [γ], and show that these canonical representatives can be put into one-to-one
correspondence with Z. The idea is to cover S1 by a pair of contractible open sets, which
we can take to be U− = {(x, y) ∈ S1 : y < ε} and U+ = {(x, y) ∈ S1 : y > −ε} for some
small ε > 0. (These are slightly larger than the lower and upper semicircles in S1.) Given
a loop γ : I → S1, the sets V± = γ−1(U±) form an open cover of the compact metric
space I, so, by the Lebesgue Number Theorem, there is a δ > 0 so that every interval of
length δ in I lies in either V− or V+ Choose an n > 1/δ and cut I into n subintervals of
equal length; then each (closed) subinterval (has length less than δ so) is mapped by γ
into either U− or U+ (or both); choose one, assigning a + or − to each subinterval. If two
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adjacent subintervals have the same sign, amalgamate them into a single larger interval.
Continuing in this fashion, we arrive at a collection of subintervals whose signs alternate.
The endpoints of the intervals (since they really have both signs) map into U− ∩ U+= two
short intervals.
Now we start “straightening” γ. We have I cut into subintervals I1, . . . , Ik, each mapping
into U±. These subsets are contractible, so any pair of paths between the same two points
are homotopic. Put differently, we can replace γ|Ij

with any other path between the
same two points, to obtain a new map homotopic, rel endpoints, to γ, yielding a new
representative of [γ]. This is our basic simplification process; the new path we continually
choose is the arc (in U±) between the points. So for each subinterval make this switch,
yielding a new loop (because the endpoints are unaffected) homotopic to γ, which we still
call γ. If any of the subintervals maps into U− ∩ U+, then we can switch its sign and
amalgamate it with its neighboring subintervals, producing fewer subintervals, and repeat
the process. So eventually (read: by induction) we reach a stage where each subinterval
“crosses” U±; each has its endpoints in different components of U− ∩ U+. (There is a
degenerate case where the entire interval I lies in U− ∩ U+; this implies that our altered γ
is the constant map, which is our canonical form for the identity element...) By inserting
short paths from the endpoints of our subintervals to (1, 0) or (−1, 0) (whichever one is
in the component of U− ∩ U+ containing our endpoint) and back, and straightening, we
may assume the our endpoints map to (±1, 0). Finally, a reparametrization of the interval
makes all of the subintervals we now have of the same length Ij = [j/m, (j + 1)/m],
making γ|Ij

one of precisely four maps: reparametrizing Ij as I, for convenience, they are
α1 : t 
→ (cos(πt), sin(πt)) , α1 : t 
→ (− cos(πt), sin(πt)) , α2 : t 
→ (− cos(πt),− sin(πt)) ,
α2 : t 
→ (cos(πt),− sin(πt)). (α1 and α2 map counterclockwise around the top and bottom
of the circle, respectively; their reverses go clockwise.) Any occurances of α1 ∗ α1,α1 ∗ α1,
α2 ∗α2,α2 ∗α2 may be replaced by the constant map (since these loops are null-homotopic)
and amalgamated away, and the combintations α1 ∗ α2,α2 ∗ α1, α2 ∗ α1,α1 ∗ α2 cannot
occur because in each the two paths do not share endpoints properly. So after this further
amalgamation the only posibilities are cx0 (the degenerate case), (α1∗α2)n, or (α1 ∗ α2)n =
(α2 ∗α1)n (where we must have an even number of factors by basepoint considerations; we
have loops). These are our canonical forms. If these canonical forms are unique (no two
of them are homotopic), then we can construct our isomorphism π1(S1) → R by sending
[cx0 ] 
→ 0, (α1 ∗ α2)n 
→ n, and (α1 ∗ α2)n 
→ −n. That this is an isomorphism follows by
inspection.

Provided we show uniqueness! To do this, we use another technique which we will exploit
much further later on. Essentially, we wish to show that for n �= m, the maps t 
→
(cos(2πmt), sin(2πmt)) and t 
→ (cos(2πnt), sin(2πnt)), which is what our canonical forms
really turn out to be, represent distinct elements of π1(S1), i.e., are not homotopic to one
another. To do this, we introduce the winding number; Given a loop γ : I → S1, we look at
the covering Ux+ = {(x, y) ∈ S1 : x > 0},Ux− = {(x, y) ∈ S1 : x < 0},Uy+ = {(x, y) ∈ S1 :
y > 0},Uy− = {(x, y) ∈ S1 : y < 0} and choose a partition x0 = 0, < x1 < · · · < xk = 1
of I so that γ|[xi,xi+1] maps into one of the U ’s (by Lebesgue number). Then for each i
let θi = the angle (strictly between −π and π) between the rays from the origin through
γ(xi) and γ(xi+1) (measured from the first to the second). Finally, let w(γ) =

∑
θi/2π.
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There are three things to prove:

(1) w(γ) is independent of the partition used to compute it. This is a standard trick:
given two partitions, show that both compute the same number as the union of the two
partitions. This follows by showing the the number doesn’t change by adding a single
extra point to a partition (which is immediate: don’t change the U ’s you assign (noting
that it makes no difference to the angle computation if you switch between two such that
can be assigned), and note that angles add).

(2) If γ � β, then w(γ) = w(β). This is also a standard sort of argument; the basic
idea is that a homotopy can be thought of as a long sequence of “small” homotopies.
Given the homotopy H : I × I → S1, a Lebesgue number argument, applied to the same
cover above, implies that there is an ε > 0 so that every square with side < ε maps
into one of the four sets. Then choose an n > 1/ε and partition I × I into n rows of n
squares, each of which map into one of the four sets. Let the corners of these squares
be denoted (xi, xj). If we let θi,j denote the angle between (xi, xj) and (xi+1, xj) and
ϕi,j the angle between (xi, xj) and (xi, xj+1), then since the four corners of a square
are all in the same set and angles add, we find that θi,j + ϕi+1,j = ϕi,j + θi,j+1, so
θi,j + ϕi+1,j − ϕi,j = θi,j+1. Summing both sides over i, most of the left terms telescope,
and since ϕ0,j = ϕn,j = 0 (since these lie on the vertical sides, where the homotopy
is constant), we find that w(H|I×{xj}) =

∑
θi,j =

∑
θi,j+1 = w(H|I×{xj+1}) So, by

induction, w(γ) = w(H|I×{x0}) = w(H|I×{xn+1}) = w(β).

(3) Each of our canonical forms have different winding numbers. This is immediate; they
can be computed to be 0, n, and −n, respectively.

Together these facts imply that π1(S1) ∼= Z. Note that, in fact, The map [γ] 
→ w(γ) is our
isomorphism, but we couldn’t know that without both parts of the argument. The second
part could be extended to show that this map is a homomrphism, and onto, but the first
part is needed to show that it is injective, i.e.., loops with the same winding number are
both homotopic to the same canonical form.

This is a very fundamental (pardon the pun) computation in homotopy theory, and a great
deal can be proved just this one fact. It is also the basis for nearly every other fundamental
group calculation that we will do. Spheres and disk make up the basic building blocks for
the topological spaces which we will study in this course, and as we shall see the circle
is the only one of these whose fundamental group is non-trivial, and so the fundamental
group of every space is founded upon the circles that are built into its initial construction.
To formalize this, we need to understand how that fundamental group of a space can be
assembled out of the fundamental groups of the pieces used to build it. The basic idea,
formalized in the Seifert-van Kampen Theorem, is that if X = A ∪B, and we understand
the fundamental groups of A, B, and A ∩ B, then we can compute π1(X) from this. But
before embarking on this line of thought, let us first put our computation π1(S1) ∼= Z to
work.

One of the standard results of calculus is that the intermediate value theorem implies
that every map f : I → I has a fixed point: f(x0) = x0 for some x0 ∈ I. This has a
higher-dimensional analogue:
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Brouwer Fixed Point Theorem: Every map f : D2 → D2 has a fixed point. Proof:
If not, then we can construct a retraction r : D2 → ∂D2 by sending x ∈ D2 to the point
on ∂D2 lying on the ray from f(x) to x (this uses the hypothesis that f(x) �= x); such
a ray intersects the boundary in exactly one point. A little analytic geometry will allow
you to write down a formula for this map, which uses only elementary operations and the
function f , so r is continuous. But a retraction induces a surjective homomorphism on π1,
so r∗ is a surjection from π1(D2) = 1 to π1(∂D2) = π1(S1) = Z, a contradiction. So f
must have a fixed point.

Another quick result using π1(S1) ∼= Z is the Fundamental Theorem of Algebra: Every
non-constant polynomial (with complex coefficients) has a complex root: for every f(z) =
anzn+· · ·+a0 with n ≥ 1 and an �= 0, ai ∈ C, there is a z0 ∈ C with f(z0) = 0.For, thinking
of C = R2, if not, then f is a map R2 → R2 \ {0}. We can divide through by an without
affeting this, and assume that f is monic. Setting γm(t) = f(m cos(2πt), m sin(2πt)), then
thought of as a map of the circle into R2 \ {0}, it manifestly extends to a map of the
disk D2, as Γn(x) = f(mx), so γm is null-homotopic for all m. But R2 \ {0} deformation
retracts to the unit circle (the retraction is r(z) = z/|z|), so π1(R2 \ {0}) ∼= Z, and by the
above all of the [γm] represent 0 in Z, and so r∗[γm] = [r ◦ γm] = 0, as well. But for large
m, it turns out, we can compute w(r ◦ γm) = n, which, since n ≥ 1, is a contradiction. To
see this, we write γm(t) = f(me2πit) = mn(e2πnit +(an−1/m)e2π(n−1)it + · · ·+(a0/mn)) =
mn(e2πnit + R(m, t)), so r ◦ γm(t) = (e2πnit + R(m, t))/|e2πnit + R(m, t)|. But as m → ∞,
R(m, t) → 0 uniformly in t, since every term in R(m, t) is a number with constant norm
divided by a positive power of m. So for large enough m |R(m, t)| < 1/2 for all t, and then
for every s ∈ I, |e2πnit + sR(m, t)| �= 0, since this could be 0 only if e2πnit = −sR(m, t),
which is impossible since the left-hand side has norm 1 and the right has norm at most 1/2.
Then the homotopy H(t, s) = (e2πnit + sR(m, t))/|e2πnit + sR(m, t)| is well-defined and
continuous, H : I|timesI → S1, and defines a homotopy from α : t 
→ e2πnit (at s = 0) to
r ◦γm (at s = 1). Since w(α) = n, we have shown that, for large enough m, w(r ◦γm) = n.
This contradiction implies that f must have a root, as desired.

Group theory “done right”: presentations

Our next task is to build up machinery for computing the fundamental group of still more
spaces. The basic idea is that if we understand how a space it built up out of simpler
pieces, then its fundamental group is similarly built up out of “simpler” groups. This
building up of groups is best understood in the language of combinatorial group theory,
using presentations of groups by generators and relations.

Free groups: Σ = a set; a reduced word on Σ is a (formal) product aε1
1 · · ·aεn

n with ai ∈ Σ
and εi = ±1, and either ai �= ai+1 or εi �= −εi+1 for every i. (I.e., no aa−1, a−1a in the
product.)

The free group F (Σ) = the set of reduced words, with multiplication = concatenation
followed by reduction; remove all possible aa−1, a−1a from the site of concatenation.

identity element = the empty word, (aε1
1 · · ·aεn

n )−1 = a−εn
n · · ·a−ε1

1 . F (Σ) is generated by
Σ, with no relations among the generators other than the “obvious” ones.

9



Important property of free groups: any function f : Σ → G , G a group, extends uniquely
to a homomorphism φ : F (Σ) → G.

If R ⊆ F (Σ), then < R >N = normal subgroup generated by R

= {
n∏

i=1

girig
−1
i : n ∈ N0, gi ∈ F (Σ), ri ∈ R}

=smallest normal subgroup containing R.

F (Σ)/ < R >N = the group with presentation < Σ|R > ; it is the largest quotient of F (Σ)
in which the elements of R are the identity. Every group has a presentation:

G = F (G)/ < gh(gh)−1 : g, h ∈ G >N

where (gh) is interpreted as a single letter in G.

If G1 =< Σ1|R1 > and G2 =< Σ2|R2 >, then their free product G1 ∗G2 =< Σ1

∐
Σ2|R1 ∪

R2 > (Σ1, Σ2 must be treated as (formally) disjoint). Each element has a unique reduced
form as g1 · · · gn where the gi alternate from G1, G2. G1, G2 can be thought of as subgroups
for G1 ∗G2, in the obivous way. Important property of free products: any pair of homoms
φi : Gi → G extends uniquely to a homom φ : G1 ∗ G2 → G (exactly the way you think it
does).

Gluing groups: given groups G1, G2, with subgroups H1, H2 that are isomorphic H1
∼= H2,

how can we “glue” G1 and G2 together along their “common” subgroup? More generally
(and with our eye on van Kampen’s Theorem) given a group H and homomorphisms
φ1 : H → Gi, we wish to build the largest group “generated” by G1 and G2, in which
φ1(h) = φ2(h) for all h ∈ H.

We can do this by starting with G1 ∗ G2 (to get the first part), and then take a quotient
to insure that φ1(h)(φ2(h))−1 = 1 for every h. Using presentations G1 =< Σ1|R1 > ,
G2 =< Σ2|R2 > , if we insist on quotienting out by as little as possible to get our desired
result, we can do this very succinctly as

G = (G1 ∗ G2)/ < φ1(h)(φ2(h))−1 : h ∈ H >N=< Σ1

∐
Σ2|R1 ∪ R2 ∪ {φ1(h)(φ2(h))−1 : h ∈ H} >

This group G == G1 ∗H G2 is the largest group generated by G1 and G2 in which φ1(h) =
φ2(h) for all h ∈ H, and is called the amalgamated free product or free product with
amalgamation (over H) . [Warning! Group theorists will generally use this term only
if both homoms φ1, φ2 are injective. (This insures that the natural maps of G1, G2 into
G1 ∗H G2 are injective.) But we will use this term for all φ1, φ2. (Some people use the
term pushout in this more general case.)]

Important special cases : G∗H {1} = G/ < φ(H) >N=< Σ|R∪φ(H) > , and G1 ∗{ 1}G2
∼=

G1 ∗ G2

The relevance to π1: the Seifert-van Kampen Theorem.

If we express a topological space as the union X = X1∪X2, then we have inclusion-induced
homomorphisms

j1∗ : π1(X1) → π1(X) , j2∗ : π1(X2) → π1(X)

10



- to be precise, we should choose a common basepoint in A = X1 ∩X2. This in turn gives
a homomorphism φ : π(X1) ∗ π1(X2) → π1(X) . Under the hypotheses

X1, X2 are open, and X1, X2, X1 ∩ X2 are path-connected
we can see that this homom is onto:

Given x0 ∈ X1 ∩ X2 and a loop γ : (I, ∂I) → (X, x0), we wish to show that it is ho-
motopic rel endpoints to a product of loops which lie alternately in X1 and X2. But
{γ−1(X1), γ−1(X2)} is an open cover of the compact metric space I, and so there is an
ε > 0 (a Lebesgue number) so that every interval of length ε in I lies in one of these two sets,
i.e., maps, under γ, into either X1 or X2. If we set N = �1/ε�, then setting ai = i/N , then
we get a sequence of intervals Ji = [ai, ai+1], i = 0, . . .N − 1, each mapping into X1 or X2.
If Ji and Ji+1 both map into the same subpace, replace them in the sequence with their
union. Continuing in this fashion, reducing the number of subintervals by one each time,
we will eventually find a collection Ik, k = 1, . . .m, of intervals covering I, overlapping only
on their endpoints, which alternately map into X1 and X2. Their endpoints, therefore, all
map into X1 ∩ X2. Setting yk = γ(Ik ∩ Ik+1), we can, since X1 ∩ X2 is path-connected,
find a path δk : I → X1 ∩ X2 with δk(0) = yk and δk(1) = x0. Choosing our favorite
homeomorphisms hk : I → Ik and defining ηk = γ|Ik

◦ hk, we have that, in π1(X, x0),
[γ] = [η1 ∗ · · · ∗ ηm] = [η1 ∗ (δ1 ∗ δ1) ∗ η2 ∗ · · · ∗ ηm−1 ∗ (δm−1 ∗ δm−1) ∗ ηm]

= [η1 ∗ δ1][δ1 ∗ η2 ∗ δ2] · · · [δm−2 ∗ ηm−1 ∗ δm−1][δm−1 ∗ ηm]
We can insert the δk ∗ δk into these products because each is homotopic to the constant
map, and ηk∗(constant) is homotopic to ηk by the same sort of homotopy that established
that the constant map represents the identity in the fundamantal group.

This results in a product of loops (based at x0) which alternately lie in X1 and X2. This
product can therefore be interpreted as lying in π(X1) ∗π1(X2), and maps, under φ, to [γ]
. φ is therefore onto, and π1(X) is isomorphic to the free product modulo the kernel of
this map φ.

Loops γ : (I, ∂I) → (A, x0), can, using the inclusion-induced maps i1∗ : π1(A) → π1(X1)
, i2∗ : π1(A) → π1(X2), be thought as either in π1(X1) or π1(X2) . So the word
i1∗(γ)(i2∗(γ))−1, in π(X1) ∗ π1(X2), is set to the identity in π1(X) under φ. So these
elements lie in the kernel of φ.

Seifert - van Kampen Theorem: ker(φ) =< i1∗(γ)(i2∗(γ))−1 : γ ∈ π1(A) >N , so
π1(X) ∼= π1(X1) ∗π1(A) π1(X2) .

Before we explore the proof of this, let’s see what we can do with it!

Fundamental groups of graphs: Every finite connected graph Γ has a maximal tree
T , a connected subgraph with no simple circuits. Since any tree is the union of smaller
trees joined at a vertex, we can, by induction, show that π1(T ) = {1} . In fact, if e
is an outermost edge of T , then T deformation retracts to T \ e, so, by induction, T is
contractible. Consequently (Hatcher, Proposition 0.17), Γ and the quotient space Γ/T are
homotopy equivalent, and so have the same π1. But Γ/T = Γn is a bouquet of n circles
for some n. If we let U = a neighborhood of the vertex in Γn, which is contractible, then,
by singling out one petal of the bouquet, we have
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Γn = (Γn−1 ∪ U) ∪ (Γ1 ∪ U) = X1 ∪ X2

with Γk ∪ U ∼ (Γk ∪ U)/U ∼= Γk. And since X1 ∩ X2 = U ∼ ∗, we have that
π1(Γn) ∼= π1(Γn−1) ∗1 π1(Γ1) = π1(Γn−1) ∗ Z

So, by induction, π1(Γ) ∼= π1(Γn) ∼= Z∗ · · · ∗Z = F (n), the free group on n letters, where n
= the number of edges not in a maximal tree for Γ. The generators for the group consist
of the edges not in the tree, prepended and appended by paths to the basepoint.

Gluing on a 2-disk: If X is a topological space and f : ∂D2 → X is continuous, then
we can construct the quotient space Z = (X

∐
D

2)/{x � f(x) : x ∈ ∂D
2}, the result

of gluing D2 to X along f . We can use Seifert - van Kampen to compute π1 of the
resulting space, although if we wish to be careful with basepoints x0 (e.g., the image of
f might not contain x0, and/or we may wish to glue several disks on, in remote parts of
X), we should also include a rectangle R, the mapping cylinder of a path γ running from
f(1, 0) to x0, glued to D2 along the arc from (1/2, 0) to (1, 0) (see figure). This space
Z+ deformation retracts to Z, but it is technically simpler to do our calculations with
the basepoint y0 lying above x0. If we write D1 = {x ∈ D2 : ||x|| < 1} ∪ (R \ X) and
D2 = {x ∈ D2 : ||x|| > 1/3}∪R , then we can write Z+ = D+ ∪ (X ∪D2) = X1 ∪X2. But
since X1 ∼ ∗ , X2 ∼ X (it is essentially the mapping cylinder of the maps f and γ ) and
X1 ∩ X2 = {x ∈ D2 : 1/3 < ||x|| < 1} ∩ (R \ X) � S1, we find that

π1(Z, y0) ∼= π1(X2, y0) ∗Z {1} = π1(X2)/ < Z >N∼= π1(X2)/ < [δ ∗ γ ∗ f ∗ γ ∗ δ] >N

If we then use δ as a path for a change of basepoint isomorphism, and then a homo-
topy equivalence from X2 to X (fixing x0), we have, in terms of group presentations, if
π1(X, x0) =< Σ|R > , then π1(Z) =< Σ|R ∪ {[γ ∗ f ∗ γ]} > . So the effect of gluing on a
2-disk on the fundamental group is to add a new relator, namely the word represented by
the attaching map (adjusting for basepoint).

X

x

y0

0

2

+Z

γ

x0

y0

δ y0

X1
δ

δ

f

This in turn opens up huge possibilities for the computation of π1(X). For example, for
cell complexes, we can inductively compute π1 by starting with the 1-skeleton, with free
fundamental group, and attaching the 2-cells one by one, which each add a relator to the
presentation of π1(X) . [Exercise: (Hatcher, p.53, # 6) Attaching n-cells, for n ≥ 3, has
no effect on π1.] As a specific example, we can compute the fundamental group of any
compact surface.

CW complexes: The “right” spaces to do algebraic topology on.

The basic idea: CW complexes are built inductively, by gluing disks onto lower-dimensional
strata. X =

⋃
X(n), where

X(0) = a disjoint union of points, and, inductively,
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X(n) is built from X(n−1) by gluing n-disks Dn
i along their boundaries. That is we have

fi : ∂Dn
i → X(n−1) and X(n) = X(n−1) ∪ (

∐
Dn

i )/ ∼ where x ∼ fi(x) for all x ∈ ∂Dn
i .

We have (natural) inclusions X(n−1) ⊆ X(n), and X =
⋃

X(n) is given the weak topology;
that is, C ⊆ X is closed ⇔ C ∩ X(n) is closed for all n.
(Note: this is reasonable; X(n−1) is closed in X(n) for all n.)

Each disk Dn
i has a characteristic map φi : Dn

i → X given by
Dn

i → X(n−1) ∪ (
∐

Dn
i ) → X(n) ⊆ X .

f : X → Y is cts ⇔ f ◦ φi : Dn
i → X → Y is cts for all Dn

i .
(This is a consequence of using the weak topology.)

A CW pair (X, A) is a CW complex X and a subcomplex A, which is a subset which is
a union of images of cells, so it is a CW complex in its own right. We can induce CW
structures under many standard constructions; e.g., if (X, A) is a CW pair, then X/A
admits a CW structure whose cells are [A] and the cells of X not in A. We can glue two
CW complexes X, Y along isomorphic subcomplexes A ⊆ X, Y , yielding X ∪A Y .

“CW”=closure finiteness, weak topology

Perhaps the most important property of CW complexes (for algebraic topology, anyway)
is the homotopy extension property; given a CW pair (X, A), a map f : X → Y , and
a homotopy H : A × I → Y such that H|A×0 = f |A, there is a homotopy (extension)
K : X × I → Y with K|A×I = H. This is because B = X × {0} ∪ A × I is a retract of
X × I; K is the composition of this retraction and the “obvious” map from B to Y .

To build the retraction, we do it one cell of X at a time. The idea is that the retraction
is defined on the cells of A (it’s the identity), so look at cells of X not in A. Working our
way up in dimension, we can assume the the retraction rn−1 is defined on (the image of)
∂Dn×I, i.e., on X(n−1)×I. But Dn×I (strong deformation) retracts onto Dn×0∪∂Dn×I;
composition of rn−1 with this retraction extends the retraction over φ(Dn) × I, and so
over X(n) × I..

This, for example, lets us show that if (X, A) is a CW pair and A is contractible, then
X/A � X . This is because the composition A → ∗ → A is homotopic to the identity IA,
via some map H : A × I → A, with H|A×0 = IA. Thinking of H as mapping into X ,
then together with the map IX : X → X the HEP provides a map K : X × I → X with
K0 = IX and K1(A) = ∗. Setting K1 = g : X → X , it induces a map h : X/A → X . This
is a homotopy inverse of the projection p : X → X/A:

h ◦ p = g � IX via K, and p ◦ h : X/A → X/A is homotopic to IX/A since Kt(A) ⊆ A for
every t, so induces a map Kt : X/A → X/A, giving a homotopy between
K0 = IX = IX/A and K1 = g = p ◦ h.

Proving Seifert - van Kampen:

We now turn our attention to proving Seifert - van Kampen; understanding the kernel
of the map φ : π1(X1) ∗ π1(X2) → π1(X) , under the hypotheses that X1, X2 are open,
A = X1 ∩ X2 is path-connected, and the basepoint x0 ∈ A . So we start with a product
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g = g1 · · · gn of loops alternately in X1 and X2, which when thought of in X is null-
homotopic. We wish to show that g can be expressed as a product of conjugates of
elements of the form i1∗(a)(i2∗(a))−1 (and their inverses). The basic idea is that a “big”
homotopy can be viewed as a large number of “little” homotopies, which we essentially
deal with one at a time, and we find out how little “little” is by using the same Lebesgue
number agument that we used before.

Specifically, if H is the homotopy, rel basepoint, from γ1 ∗ · · · ∗ γn, where γi is a based
loop representing gi, and the constant loop, then, as before, {H−1(X1), H−1(X2)} is an
open cover of I × I, and so has a Lebesgue number ε. If we cut I × I into subsquares,
with length 1/N on a side, where 1/N < ε, then each subsquare maps into either X1 or
X2. The idea is to think of this as a collection of horizontal strips, each cut into squares.
Arguing by induction, starting from the bottom (where our conclusion will be obvious),
we will argue that if the bottom of the strip can be expressed as an element of the group
N =< i1∗(γ)(i2∗(γ))−1 : γ ∈ π1(A) >N⊆ π1(X1) ∗ π1(X2)
(i.e., as a product of conjugates of such loops), then so can the top of the strip.

x

γ γ

x

x

0

1 n

0

0

H x0

x0

x0

And to do this, we work as before. We have a strip of squares, each mapping into either
X1 or X2. If adjacent squares map into the same subpace, amalgamate them into a single
larger rectangle. Continuing in this way, we can break the strip into subrectangles which
alternately map into X1 or X2. This means that the vertical arcs in between map into
X1 ∩ X2 = A, and represent paths ηi in A. Their endpoints also map into A, and so can
be joined by paths (δi on the top, εi on the bottom) in A to the basepoint. The top of the
strip is homotopic, rel basepoint, to
(α1 ∗ δ1) ∗ (δ1 ∗ α2 ∗ δ2) ∗ · · · ∗ (δk−1 ∗ αk)
each grouping mapping into either X1 or X2. The rectangles demonstrate that each group-
ing is homotopic, rel basepoint, to the product of loops
(δi ∗ ηi ∗ εi) ∗ (εi ∗ βi ∗ εi+1) ∗ (εi+1 ∗ ηi+1 ∗ δi+1) = aibia

−1
i+1

where this is thought of as a product in either π1(X1) or π1(X2). The point is that when
strung together, this appears to give (b1a

−1
2 )(a2b2a

−1
3 ) · · · (akbk) , with lots of cancellation,

but in reality, the terms a−1
i ai represent elements of N , since the two “cancelling” factors

are thought of as living in the different groups π1(X1), π1(X2). The remaining terms, if
we delete these “cancelling” pairs, is b1 · · · bk = β1 ∗ ε1 ∗ · · · ∗ εi ∗ βi ∗ εi+1 ∗ · · · ∗ εk ∗ βk,
which is homotopic rel endpoints to β1 ∗ · · · ∗ βk, which, by induction, can be represented
as a product which lies in N .
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So, we can obtain the element represented by the top of the strip by inserting elements
of N into the bottom, which is a word having a representation as an element of N . The
final problem to overcome is that the insertions represented by the vertical arcs might
not be occuring where we want them to be! But this doesn’t matter; inserting a word w
in the middle of another uv (to get uwv) is the same as multiplying uv by a conjugate
of w; uwv = (uv)(v−1wv), so since the bottom of the strip is in N , and we obtain the
top of the strip by inserting elements of N into the bottom, the top is represented by a
product of conjugates of elements of N , so (since N is normal) is in N . And a final final
point; the subrectangles may not have cut the bottom of the strip up into the same pieces
that the inductive hypothesis used to express the bottom as an element of N . It didn’t
even cut it into loops; we added paths at the break points to make that happen. The
inductive hypothesis would have, in fact, added its own extra paths, at possibly different
points! But if we add both sets of paths, and cut the loop up into even more pieces, then
we end up with a loop, which we have expressed as a product in π1(X1) ∗ π1(X2) in two
(possibly different) ways, since the two points of view will have interpreted pieces as living
in different subspaces. But when this happens, it must be because the subloop really lives
in X1 ∩X2 = A. Moving from one to the other amounts to repeatedly changing ownership
between the two sets, which in π1(X1) ∗ π1(X2) means inserting an element of N into the
product (that is literally what elements of N do). But as before, these insertions can be
collected at one end as products of conjugates. So if one of the elements is in N , the other
one is, too.

Which completes the proof!

The inherent complications above derived from needing open sets can be legislated away,
by introducing additional hypotheses:

Theorem: If X = X1 ∪ X2 is a union of closed sets X1, X2, with A = X1 ∩ X2 path-
connected, and if X1, X2 have open neighborhood U1,U2 so that U1,U2,U1∩U2 deformation
retract onto X1, X2, A respectively, then π1(X) ∼= π1(X1) ∗π1(A) π1(X2) as before.

The hypotheses are satisfied, for example, if X1.X2 are subcomplexes of the cell complex
X .

Some more computations:

The real projective plane RP 2 is the quotient of the 2-sphere S2 by the antipodal map
x 
→ −x; it can also be thought of as the upper hemisphere, with identification only along
the boundary. This in turn can be interpreted as a 2-disk glued to a circle, whose boundary
wraps around the circle twice. So π1(RP 2) ∼=< a|a2 >∼= Z2 = Z/2Z . A surface F of genus
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2 can be given a cell structure with 1 0-cell, 4 1-cells, and 1 2-cell, as in the figure, as in the
first of the figures below. The fundamental group of the 1-skeleton is therefore free of rank
4, and π1(F ) has a presentation with 4 generators and 1 relator. Reading the attaching
map from the figure, the presentation is < a, b, c, d | [a, b][c, d] > .

ab

c
d

a

b
c d

e

x0

Giving it a different cell structure, as in the second figure, with 2 0-cells, 6 1-cells, and
2 2-cells, after choosing a maximal tree, we can read off the two relators from the 2-cells
to arrive at a different presentation π1(F ) =< a, b, c, d, e | aba−1eb−1, cde−1c−1d−1 > . A
posteriori, these two presentations describe isomorphic groups.

Using the same technology, we can also see that, in general, any group is the fundamental
group of some 2-complex X ; starting with a presentation G =< Σ|R >, build X by starting
with a bouquet of |Σ| circles, and attach |R| 2-disks along loops which represent each of
the generators of R. (This works just as well for infinite sets Σ and/or R; essentially the
same proofs as above apply.)

Wirtinger presentations for knot complements:

A knot K is (the image of) an embedding h : S1 ↪→ R3. Wirtinger gave a prescription
for taking a planar projection of K and producing a presentation of π1(R3 \ K) = π1(X).
The idea: think of K as lying on the projection plane, except near the crossings, where it
arches under itself. We build a CW-complex Y ⊆ X that X deformation retracts to. A
presentation for π1(Y ) gives us π1(X).

add arcs to basept up here
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To build Y , glue rectangles arching under the strands of K to a horzontal plane lying just
above the projection plane of K. At the crossing, the rectangle is glued to the rectngle
arching under the over-strand. X deformation retracts to Y ; the top half of R3 deformation
retracts to the top plane, the parts of X inside the tubes formed by the rectangles radially
retract to the boundaries of the tubes, and the bottom part of X vertically retracts onto
Y . Formally, we should really keep a “slab” above the plane, to give us a place to run arcs
to a fixed basepoint in the interior of the slab.
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We think of Y as being built up from the slab C, by gluing on annuli Ai
∼= S1 × I, one for

each rectangle Ri glued on; the rectangle Si lying above Ri in the bottom of the slab C is
the other half of the annulus. Then we glue on the 2-disks Dj , one for each crossing of the
knot projection. A little thought shows that there are as many annuli as disks; the annuli
correspond to the unbroken strands of the knot projetion, which each have two ends, and
each crossing is where two ends terminate (so there are two ends for every Ai and two ends
for every Dj , so there are half as many of each as there are total number of ends). To make
sure that all of our interections are path connected, and to formally use a single basepoint
in all of our computations, we join every one of the annuli and disks to a basepoint lying
in the slab by a collection of (disjoint) paths.

Now starting with the slab (which is simply-connected), we begin to add the Ai one at a
time; each has fundamental group Z, generated by a loop which travels once around the
S1-direction, and its intersection with C∪ the previously glued on annuli is the rectangle
Si, which is simply connected. So, inductively, π1(C ∪ A1 ∪ · · · ∪ Ai) ∼= π1(C ∪ A1 ∪
· · · ∪ Ai−1) ∗ π1(Ai) ∼= F (i − 1) ∗ Z ∼= F (i) is the free group on i letters, so, adding all n
(say) of the annuli yields F (n). To finish, we glue on the n 2-disks Dj ; these amount to
adding n relators to the presentation 〈x1, . . . , xn|〉. To determine these relators, we need
to choose specific generators for our π1(Ai); a standard choice is made by orienting the
knot (choosing a direction to travel around it) and choosing the loop which goes counter-
clockwise around the annulus (when you stand it vertically using the orientation of the
strand it is going around. Then going around the boundary of the 2-disk Dj spells out the
word xrxsx

−1
r x−1

t , if the overstrand at the crossing corresponds to Ar and the understrand
runs from As on the left to At on the right. [There is the possibility of the mirror image,
when the orientation of the strands goes from right to left under the overstrand; then
the proper relator is xrx

−1
s x−1

r xt .] Carrying this out for every 2-disk completes the
presentation of π1(Y ) ∼= π1(X).
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With practice, it becomes completely routine to read off a presentation for the fundamental
group of R3 \K from a projection of K. For example, from the projection above, we have
π1(R3 \ K) ∼= 〈x1, . . . , x8|x8x1 = x2x8, x2x7 = x8x2, x5x8 = x1x5, x1x5 = x6x1, x3x6 =
x7x3, x7x2 = x3x7, x3x2 = x2x4, x7x4 = x5x7〉
Postscript: why should we care? The role of the fundamental group in distinguishing
spaces has already been touched upon; if two (path-connected) spaces have non-isomorphic
fundamental groups, then the spaces are not homeomorphic, and even not homotopy equiv-
alent. It is one of the most basic, and in many cases the best such invariant we will have
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in our arsenal (hence the name “fundamental”). As we have seen with the circle, it cap-
tures the notion of how many times a loop “winds around” in a space. And the idea of
using paths to understand a space is very basic; we explore a space by mapping familiar
objects into it. (This is a theme we keep returning to in this course.) The concepts we
have introduced play a role in analysis, for instance with the notion of a path integral; the
invariance of the integral under homotopies rel endpoints is an important property, related
to Green’s Theorem and (locally) conservative vector fields. And the space of all paths in
X plays an important (theoretical, although pprobably not practical) role in what we will
do next.
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