
Math 872 Algebraic Topology
Running lecture notes

Covering spaces: We can motivate our next topic by looking more closely at one of our
examples above. The projective plane RP 2 has π1 = Z2 . It is also the quotient of the
simply-connected space S2 by the antipodal map, which, together with the identity map,
forms a group of homeomorphisms of S2 which is isomorphic to Z2. The fact that Z2 has
this dual role to play in describing RP 2 is no accident; codifying this relationship requires
the notion of a covering space.

The quotient map q : S2 → RP 2 is an example of a covering map. A map p : E → B
is called a covering map if for every point x ∈ B, there is a neighborhood U of x (an
evenly covered neighborhood) so that p−1(U) is a disjoint union Uα of open sets in E, each
mapped homeomorphically onto U by (the restriction of) p . B is called the base space of
the covering; E is called the total space. The quotient map q is an example; (the image of)
the complement of a great circle in S2 will be an evenly covered neighborhood of any point
it contains. The disjoint union of 43 copies of a space, each mapping homeomorphically to
a single copy, is an example of a trivial covering. As a last example, we have the famous
exponential map p : R → S1 given by t �→ e2πit = (cos(2πt), sin(2πt)). The image of
any interval (a, b) of length less than 1 will have inverse image the disjoint union of the
intervals (a + n, b + n) for n ∈ Z .

OK, maybe not the last. We can build many finite-sheeted (every point inverse is finite)
coverings of a bouquet of two circles, say, by assembling n points over the vertex, and
then, on either side, connecting the points by n (oriented) arcs, one each going in and out
of each vertex. By choosing orientations on each 1-cell of the bouquet, we can build a
covering map by sending the vertices above to the vertex, and the arcs to the one cells,
homeomorphically, respecting the orientations. We can build infinite-sheeted coverings in
much the same way.

a

b

p

Covering spaces of a (suitably nice) space X have a very close relationship to π1(X, x0).
The basis for this relationship is the

Homotopy Lifting Property: If p : X̃ → X is a covering map, H : Y × I → X is a
homotopy, H(y, 0) = f(y), and f̃ : Y → X̃ is a lift of f (i.e., p ◦ f̃ = f), then there is a
unique lift H̃ of H with H̃(y, 0) = f̃(y) .

The proof of this we will defer to next time, to give us sufficient time to ensure we finish
it!
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In particular, applying this property in the case Y = {∗}, where a homotopy H : {∗}×I →
X is really just a a path γ : I → X , we have the Path Lifting Property: “given a covering
map p : X̃ → X , a path γ : I → X with γ(0) = x0, and a point x̃0 ∈ p−1(x0), there is
a unique path γ̃ lifting γ with γ̃(0) = x̃0 .” One of the immediate consequences of this is
one of the cornerstones of covering space theory:

If p : (X̃, x̃0) → (X, x0) is a covering map, then the induced homomorphism p∗ : π1(X̃, x̃0) →
π1(X, x0) is injective.

Proof: Suppose γ : (I, ∂I) → (X̃, x̃0) is a loop p∗([γ]) = 1 in π1(X, x0). So there is
a homotopy H : (I × I, ∂I × I) → (X, x0) between p ◦ γ and the constant path. By
homotopy lifting, there is a homotopy H̃ from γ to the lift of the constant map at x0.
The vertical sides s �→ H̃(0, s), H̃(1, s) are also lifts of the constant map, beginning from
H̃(0, 0), H̃(1, 0) = γ(0) = γ(1) = x̃0, so are the constant map at x̃0. Consequently, the lift
at the bottom is the constant map at x̃0. So H̃ represents a null-homotopy of γ, so [γ] = 1
in π1(X̃, x̃0). So π1(X̃, x̃0) = {1} .

Even more, the image p∗(π1(X̃, x̃0))) ⊆ π1(X, x0) is precisely the elements whose repre-
sentatives are loops at x0, which when lifted to paths starting at x̃0), are loops. For if γ
lifts to a loop γ̃, then p ◦ γ̃ = γ, so p∗([γ̃]) = [γ] . Conversely, if p∗([γ̃]) = [γ], then γ and
p ◦ γ̃ are homotopic rel endpoints, and so the homotopy lifts to a homotopy rel endpoints
between the lift of γ at x̃0, and the lift of p ◦ γ̃ at x̃0 (which is γ̃, since γ̃(0) = x̃0 and lifts
are unique). So the lift of γ is a loop, as desired.

The proof of the homotopy lifting property follows a pattern that we will become very
familiar with: we lift maps a little bit at a time. For every x ∈ X there is an open set
Ux evenly covered by p . For each fixed y ∈ Y , since I is compact and the sets H−1(Ux)
form an open cover of Y × I, then since I is compact, the Tube Lemma provides an open
neighborhood V of y in Y and finitely many p−1Ux whose union covers V × I .

To define H̃(y, t), we (using a Lebesgue number argument) cut the interval {y} × I into
finitely many pieces, the ith mapping into Uxi

under H. f̃(y) is in one of the evenly
covered sets Ux1α1 , and the restricted map p−1 : Ux1 → Ux1α1 following H restricted to
the first interval lifts H along the first interval to a map we will call H̃. We then have
lifted H at the end of the first interval = the beginning of the second, and we continue
as before. In this way we can define H̃ for all (y, t) . To show that this is independent of
the choices we have made along the way, we imagine two ways of cutting up the interval
{y} × I using evenly covered neighborhoods Uxi

and Vwj
, and take intersections of both

sets of intervals to get a common refinement of both sets, covered by the intersections
Uxi

∩ Vwj
, and imagine building H̃ using the refinement. At the start, at f̃(y), we are

in Ux1α1 ∩ Vw1β1 . Because at the start of the lift (y, 0) we lift to the same point, and
p−1 restricted to this intersection agrees with p−1 restricted to each of the two pieces, we
get the same lift acroos the first refined subinterval. This process repeats itself across all
of the subintervals, showing that the lift is independent of the choices made. This also
shows that the lift is unique; once we have decided what H̃(y, 0), the rest of the values
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of the H̃ are determined by the requirement of being a lift. also, once we know the map
is well-defined, we can see that it is continuous, since for any y, we can make the same
choices across the entire open set V given by the Tube Lemma, and find that H̃, restricted
to V × (ai − δ, bi + δ) (for a small delta; we could wiggle the endpoints in the construction
without changing the resulting function, by its well-definedness) is H estricted to this set
followed by p−1 restriced in domain and range, so this composition is continuous. So H̃ is
locally continuous, hence continuous.

So, for example, if we build a 5-sheeted cover of the bouquet of 2 circles, as before, (after
choosing a maximal tree upstairs) we can read off the images of the generators of the
fundamental group of the total space; we have labelled each ede by the ereator it traces
out downstairs, and for each ede outside of the maximal tree chosen, we read from basepoint
out the tree to one end, across the edge, and then back to the basepoint in the tree. In
our example, this gives:

< ab, aaab−1, baba−1, baa, ba−1bab−1, bba−1b−1| >

a

b

pa

a
a

a

a

bb

b
b

b x~0

This is (from its construction) a copy of the free group on 6 letters, in the free group F (a, b)
. In a similar way, by explicitly building a covering space, we find that the fundamental
group of a closed surface of genus 3 is a subgroup of the fundamental group of the closed
surface of genus 2.

The cardinality of a point inverse p−1(y) is, by the evenly covered property, constant on
(small) open sets, so the set of points of x whose point inverses have any given cardinality
is open. Consequently, if X is connected, this number is constant over all of X , and is
called the number of sheets of the covering p : X̃ → X .

The number of sheets of a covering map can also be determined from the fundamental
groups:

Proposition: If X and X̃ are path-connected, then the number of sheets of a covering
map equals the index of the subgroup H = p∗(π1(X̃, x̃0) in G = π1(X, x0) .

To see this, choose loops {γα} representing representatives {gα} of each of the (right)
cosets of H in G. Then if we lift each of them to loops based at x̃0, they will have distinct
endpoints; if γ̃1(1) = γ̃2(1), then by uniqueness of lifts, γ1 ∗γ2 lifts to γ̃1 ∗ γ̃2, so it lifts to a
loop, so γ1 ∗ γ2 represents an element of p∗(π1(X̃, x̃0), so g1 = g2. Conversely, every point
in p−1(x0) is the endpoint of on of these lifts, since we can construct a path γ̃ from x̃0 to
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any such point y, giving a loop γ = p ◦ γ̃ representing an element g ∈ π1(X, x0). But then
g = hgα for some h ∈ H and α, so γ is homotopic rel endpoints to η ∗ γα for some loop η
representing h. But then lifting these based at x̃0, by hmotopy lifting, γ̃ is homotopic rel
endpoints to η̃, which is a loop, followed by the lift γ̃α of γα starting at x̃0. So γ̃ and γ̃α

have the same value at 1.

Therefore, lifts of representatives of coset representatives of H in G give a 1-to-1 corre-
spondence, given by γ̃(1), with p−1x0. In particular, they have the same cardinality.

The path lifting property (because π([0, 1], 0) = {1}) is actually a special case of a more
general lifting criterion: If p : (X̃, x̃0) → (X, x0) is a covering map, and f : (Y, y0) →
(X, x0) is a map, where Y is path-connected and locally path-connected, then there is a lift
f̃ : (Y, y0) → (X̃, x̃0) of f (i.e., f = p ◦ f̃) ⇔ f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)) . Furthermore,
two lifts of f which agree at a single point are equal.

If the lift exists, then f = p ◦ f̃ implies f∗ = p∗ ◦ f̃∗, so f∗(π1(Y, y0)) = p∗(f̃∗(π1(Y, y0))) ⊆
p∗(π1(X̃, x̃0)) , as desired. Conversely, if f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)), then we wish to
build the lift of f . Not wishing to waste our work on the special case, we will use path
lifting to do it! Given y ∈ Y , choose a path γ in Y from y0 to y and use path lifting in
X to lift the path f ◦ γ to a path f̃ ◦ γ with f̃ ◦ γ(0) = x̃0 . Then define f̃(y) = f̃ ◦ γ(1)
. Provided we show that this is well-defined and continuous, it is our required lift, since
(p ◦ f̃)(y) = p(f̃(y)) = p(f̃ ◦ γ(1)) = p ◦ f̃ ◦ γ)(1) = (f ◦ γ)(1) = f(γ(1)) = f(y). To show
that it is well-defined, if η is any other path from y0 to y, then γ ∗ η is a loop in Y , so
f ◦ (γ ∗ η) = (f ◦ γ) ∗ (f ◦ η) is a loop in X representing an element of f∗(π1(Y, y0)) ⊆
p∗(π1(X̃, x̃0)), and so lifts to a loop in X̃ based at x̃0. Consequently, as before, f ◦ γ

and f ◦ η lift to paths starting at x̃0 with the same value at 1. So f̃ is well-defined. To
show that f̃ is continuous, we use the evenly covered property of p. Given y ∈ Y , and a
neighborhood Ũ of f̃(y) in X̃ , we wish to find a nbhd V of y with f̃(V) ⊆ Ũ . Choosing
an evenly covered neighborhood Uy for f(y), choose the sheet Ũy over Uy which contains
f̃(y), and set W = Ũ ∩ Ũy . This is open in X̃ , and p is a homeomorphism from this set to
the open set p(W) ⊆ X . Then if we set V ′ = f−1(p(W) this is an open set containing y,
and so contains a path-connected open set V containing y. Then is for every point z ∈ V
we build a path γ from y0 to z by concatenating a path from y0 to y with a path in V
from y to z, then by unique path lifting, since f(V ⊆ Uy , f ◦ γ lifts to the concatenation
of a path from x̃0 to f̃(y) and a path in Ũy from f̃(y) to f̃(z). So f̃(z) ∈ Ũ .

Because f̃ is built by lifting paths, and path lifting is unique, the last statement of the
proposition follows.

Universal covering spaces: As we shall see, a particularly important covering space to
identify is one which is simply connected. One thing we can see from the lifting crierion is
that such a covering is essentially unique:

If X is locally path-connected, and has two connected, simply connected coverings p1 :
X1 → X and p2 : X2 → X , then choosing basepoints xi, i = 0, 1, 2 , since p1∗(π1(X1, x1)) =
p2∗(π1(X2, x2)) = {1} ⊆ π1(X, x0), the lifting criterion with each projection playing the
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role of f in turn gives us maps p̃1 : (X1, x1) → (X2, x2) and p̃2 : (X2, x2) → (X1, x1)
with p2 ◦ p̃1 = p1 and p1 ◦ p̃2 = p2. Consequently, p2 ◦ p̃1 ◦ p̃2 = p1 ◦ p̃2 = p2 and
similarly, p1 ◦ p̃2 ◦ p̃1 = p2 ◦ p̃1 = p1. So p̃1 ◦ p̃2 : (X2, x2) → (X2, x2), for example, is a
lift of p2 to the covering map p2. But so is the identity map! By uniqueness, therefore,
p̃1 ◦ p̃2 = Id . Similarly, p̃2 ◦ p̃1 = Id. So (X1, x1) and (X2, x2) are homeomorphic. So
up to homeomorphism, a space can have only one connected, simply-connected covering
space. It is known as the universal covering of the space X .

Not every (locall path-connected) space X has a universal covering; a (further) necessary
condition is that X be semi-locally simply connected. The idea is that If p : X̃ → X is the
universal cover, then for every point x ∈ X , we have an evenly-covered neighborhood U
of x. The inclusion i : U → X , by definition, lifts to X̃ , so i∗(π1(U , x)) ⊆ p∗(π1(X̃, x̃) =
{1}, so i∗ is the trivial map. Consequently, every loop in U is null-homotopic in X .
This is semi-local simple connectivity; every point has a neighborhood whose inclusion-
induced homomorphism is trivial. Not all spaces have this property; the most famous is
the Hawaiian earrings X =

⋃
n

{x ∈ R2 : ||x − (1/n, 0)|| = 1/n} . The point (0, 0) has no

such neighborhood.

Building universal coverings: If a space X is path connected, locally path connected,
and semi-locally simply connected (S-LSC), then it has a universal covering; we describe
a general construction. The idea is that a covering space should have the path lifting
and homotopy lifting properties, and the universal cover can be characterized as the only
covering space for which only null-homotopic loops lift to loops. So we build a space and a
map which must have these properties. We do this by making a space X̃ whose points are
(equivalence classes of) [γ] based paths γ : (I, 0) → (X, x0), where two paths are equivalent
if they are homotopic rel endpoints! The projection map is p([γ]) = γ(1). The S-LSCness
is what guarantees that this is a covering map; choosing x ∈ X , a path γ0 from x0 to
x, and a neighborhood U of x guaranteed by S-LSC, paths from x0 to points in U are
based equivalent to γ ∗ γ0 ∗ η where γ is a based loop at x0 and η is a path in U . But by
simple connectivity, a path in U is determined up to homotopy by its endpoints, and so,
with γ fixed, these paths are in one-to-one correspondence with U . So p−1(U is a disjoint
union, indexed by π1(X, x0), of sets in bijective correspondence with U . The appropriate
topology on X̃, essentially given as a basis by triples γ∗, gamma0,U as above, make p a
covering map. Note that the inverse image of the basepoint x0 is the equivalence classes
of loops at x0, i.e., π1(X, x0). A path γ lifts to the path of paths [γt], where γt(s) = γ(ts),
and so the only loop in X which lifts to a loop in X̃ has endpoint [γ] = [cx0 ], i.e., [γ] = 1 in
π1(X, x0). This implies that p∗(π1(X̃, [cx0 ])) = {1}, so π1(X̃, [cx0 ]) = {1} . However,
nobody in their right minds would go about building X̃ in this way, in general! Before
describing how to do it “right”, though, we should perhaps see why we should want to?

One reason for the importance of the universal cover is that it gives us a unified approach
to building all connected covering spaces of X . The basis for this is the deck transformation
group of a covering space p : X̃ → X ; this is the set of all homeomorphisms h : X̃ → X̃ such
that p◦h = p. These homeomorphisms, by definition, permute each of the point inverses of
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p. In fact, since h can be thought of as a lift of the projection p, by the lifting criterion h is
determined by which point in the inverse image of the basepoint x0 it takes the basepoint
x̃0 of X̃ to. A deck transformation sending x̃0 to x̃1 exists ⇔ p∗(π1(X̃, x̃0) = p∗(π1(X̃, x̃1)
[we need one inclusion to give the map h, and the opposite inclusion to ensure it is a
bijection (because its inverse exists)]. These two groups are in general conjugate, by the
projection of a path from x̃0 to x̃1; this can be seen by following the change of basepoint
isomorphism down into G = π1(X, x0). As we have seen, paths in X̃ from x̃0 to x̃1 are
in 1-to-1 correspondence with the cosets of H = p∗(π1(X̃, x̃0) in p∗(π1(X, x0); so deck
transformations are in 1-to-1 correspondence with cosets whose representatives conjugate
H to itself. The set of such elements in G is called the normalizer of H in G, and
denoted NG(H) or simply N(H). The deck transformation group is therefore in 1-to-1
correspondence with the group N(H)/H under h �→ the coset represented by the projection
of the path from x̃0 to h(x̃0). And since h is essentially built by lifting paths, it follows
quickly that this map is a homomorphism, hence an isomorphism.

In particular, applying this to the universal covering space p : X̃ → X , since in this case
H = {1}, so N(H) = π1(X, x0), its deck transformation group is isomorphic to π1(X, x0).
For example, this gives the quickest possible proof that π1(S1) ∼= Z, since R is a contractible
covering space, whose deck transformations are the translations by integer distances. Thus
π1(X) acts on its universal cover as a group of homeomorphisms. And since this action
is simply transitive on point inverses [there is exactly one (that’s the simple part) deck
transformation carrying any one point in a point inverse to any other one (that’s the
transitive part)], the quotient map from X̃ to the orbits of this action is the projection
map p. The evenly covered property of p implies that X does have the quotient topology
under this action.

Every space it X the quotient of its universal cover (if it has one!) by its fundamental
group G = π1(X, x0), realized as the group of deck transformations. And the quotient
map is the covering projection. So X ∼= X̃/G . In general, a quotient of a space Z by a
group action G need not be a covering map; the action must be properly discontinuous,
which means that for every point z ∈ Z, there is a neighborhood U of x so that g 
= 1 ⇒
U ∩ gU = ∅ (the group action carries sufficiently small neighborhoods off of themselves).
The evenly covered neighborhoods provide these for the universal cover. And conversely,
the quotient of a space by a p.d. group action is a covering space.

But! Given G = π1(X, x0) and its action on a universal cover X̃, we can, instead of
quotienting out by G, quotient out by any subgroup H of G, to build XH = X̃/H. This
is a space with fundamental group H, having X̃ as universal covering. And since the
quotient (covering) map pG : X̃ → X = X̃/G factors through X̃/H, we get an induced
map pH : X̃/H → X , which is a covering map; open sets with trivial inclusion-induced
homomorphism lift homeomorphically to X̃ , hence homeomorphically to X̃/H; taking lifts
to each point inverse of x ∈ X verifies the evenly covering property for pH . So every
subgroup of G is the fundamental group of a covering of X .
We can further refine this to give the Galois correspondence. Two covering spaces p1 :
X1 → X , p2 : X2 → X are isomorphic if there is a homeomorphism h : X1 → X2
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with p1 = p2 ◦ h. Choosing basepoints x1, x2 mapping to x0 ∈ X , this implies that, if
h(x1) = x2, then p1∗(π1(X1, x1)) = p2∗(h∗(π1(X1, x1))) = p2∗(π1(X2, x2)) . On the other
hand, our homeomorphism h need not take our chosen basepoints to one another; if h(x1) =
x3, then p1∗(π1(X1, x1)) = p2∗(π1(X2, x3)). But p2∗(π1(X2, x2)) and p2∗(π1(X2, x3)) are
isomorphic, via a change of basepoint isomorphism η̂ , where η is a path in X2 from x2

to x3. But such a path projects to X has a loop at x0, and since the change of basepoint
isomorphism is by “conjugating” by the path η, the resulting groups p2∗(π1(X2, x2)) and
p2∗(π1(X2, x3)) are conjugate, by p2 ◦ η . So, without reference to basepoints, isomorphic
coverings give, under projection, conjugate subgroups of π1(X, x0) . But conversely, given
covering spaces X1, X2 whose subgroups p1∗(π1(X1, x1)) and p2∗(π1(X2, x2)) are conjugate,
lifting a loop γ representing the conjugating element to a loop γ̃ in X2 starting at x2

gives, as its terminal endpoint, a point x3 with p1∗(π1(X1, x1)) = p2∗(π1(X2, x3)) (since it
conjugates back!), and so, by the lifting criterion, there is an isomorphism h : (X1, x1) →
(X2, x3). So conjugate subgroups give isomorphic coverings. Thus, for a path-connected,
locally path-connected, semi-locally simply-connected space X , the image of the induced
homomorphism on π1 gives a one-to-one correspondence between [isomorphism classes of
(connected) coverings of X ] and [conjugacy classes of subgroups of π1(X)].

So, for example, if you have a group G that you are interested in, you know of a (nice
enough) space X with π1(X) ∼= G, and you know enough about the covering of X , then
you can gain information about the subgroup structure of G. For example, and in some
respects as motivation for all of this machinery!, a free group F (Σ) is π1 of a bouquet
of circles X . Any covering space X̃ of X is a union of vertices and edges, so is a graph.
Collapsing a maximal tree to a point, X̃ is ∼ a bouquet of circles, so has free π1. So, every
subgroup of a free group is free. (That is a lot shorter than the original, group-theoretic,
proof...) A subgroup H of index n in F (Σ) corresponds to a n-sheeted covering X̃ of X .
If |Σ| = m, then X̃ will have n vertices and nm edges. Collapsing a maximal tree, having
n − 1 edges to a point, leaves a bouquet of nm − n + 1 circles, so H ∼= F (nm − n + 1).
For example, for m = 3, index n subgroups are free on 2n + 1 generators, so every free
subgroup on 4 generators has infinite index in F (3). Try proving that directly!

Every subgroup of a free group is free, because it is the fundamental group of a covering
of a graph, i.e., of a graph. A subgroup H of index n in F (Σ) corresponds to a n-sheeted
covering X̃ of X . If |Σ| = m, then X̃ will have n vertices and nm edges. Collapsing a
maximal tree, having n − 1 edges to a point, leaves a bouquet of nm − n + 1 circles, so
H ∼= F (nm − n + 1). For example, for m = 3, index n subgroups are free on 2n + 1
generators, so every free subgroup on 4 generators has infinite index in F (3). Try proving
that directly!

Note that for a graph Γ to be a covering of another graph, with k sheets, say, the number
of vertices and edges of Γ must both be a mulitple of k. This little observation can be very
useful when trying to decide what graphs Γ might cover!

Kurosh Subgroup Theorem: If H < G1 ∗ G2 is a subgroup of a free product, then H
is (isomorphic to) a free product of a collection of conjugates of subgroups of G1 and
G2 and a free froup. The proof is to build a space by taking 2-complexes X1 and X2
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with π1’s isomorphic to G1, G2 and join their basepoints by an arc. The covering space
of this space X corresponding to H consists of spaces that cover X1, X2 (giving, after
basepoint considerations, the conjugates) connected by a collection of arcs (which, suitably
interpreted, gives the free group).

Residually finite groups: G is said to be residually finite if for every g 
= 1 there is a finite
group F and a homomorphism ϕ : G → F with ϕ(g) 
= 1 in F . This amounts to saying
that g /∈ the (normal) subgroup ker(ϕ), which amounts to saying that a loop corresponding
to g does not lift to a loop in the finite-sheeted covering space corresponding to ker(ϕ).
So residual finiteness of a group can be verified by building coverings of a space X with
π1(X) = G. For example, free groups can be shown to be residually finite in this way.

Ranks of free (sub)groups: A free group on n generators is isomorphic to a free group on
m generators ⇔ n = m; this is because the abelianizations of the two groups are Zn, Zm.
The (minimal) number of generators for a free group is called its rank. Given a free group
G = F (a1, . . . an) and a collection of words w1, . . .wm ∈ G, we can determine the rank and
ndex of the subgroup it H they generate by building the corresponding cover. The idea is
to start with a bouquet of m circles, each subdivided and labelled to spell out the words wi.
Then we repeatedly identify edges sharing on common vertex if they are labelled precisely
the same (same letter and same orientation). This process is known as folding. One can
inductively show that the (obvious) maps from these graphs to the bouquet of n circles
Xn both have image H under the induced maps on π1; since the map for the unfolded
graph factors through the one for the folded graph, the image from the folded graph can
only get smaller, but we can still spell out the same words as loops in the folded graph, so
the image can also only have gotten bigger! We continue this folding process until there is
no more folding to be done; the resulting graph X is what is known (in combinatorics) as
a graph covering; the map to Xn is locally injective. If this map is a covering map, then
our subgroup H has finite index (equal to the degree of the covering) and we can compute
the rank of H (and a basis!) from the folded graph. If it is not a covering map, then
the map is not locally surjective at some vertices; if we graft trees onto these vertices, we
can extend the map to an (infinite-sheeted) covering map without changing the homotopy
type of the graph. H therefore has infinite index in G, and its rank can be computed from
H ∼= π1(X).

Postscript: why care about covering spaces? The preceding discussion probably
makes it clear that covering places play a central role in (combinatorial) group theory. It
also plays a role in embedding problems; a common scenario is to have a map f : Y → X
which is injective on π1, and we wish to know if we can lift f to a finite-sheeted covering
so that the lifted map f̃ is homotopic to an embedding. Information that is easier to
obtain in the case of an embedding can then be passed down to gain information abut
the original map f . And covering spaces underlie the theory of analytic continuation in
complex analysis; starting with a domain D ⊆ C, what analytic continuation really builds
is an (analytic) function from a covering space of D to C. For example, the logarithm is
really defined as a map from the universal cover of C \ {0} to C. The various “branches”
of the logarithm refer to which sheet in this cover you are in.
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