
Simplicial homology = singular homology: We have so far introduced two homolo-
gies; simplicial, H∆

∗ , whose computation “only” required some linear algebra, and singular,
H∗, which is formally less difficult to work with, and which, you may suspect by now, is
also becoming less difficult to compute... For ∆-complexes, these homology groups are the
same, H∆

n (X) ∼= Hn(X) for every X . In fact, the isomorphism is induced by the inclusion
C∆

n (X) ⊆ Cn(X). And we have now assembled all of the tools necessary to prove this. Or
almost; we need to note that most of the edifice we have built for singular homology could
have been built for simplicial homology, including relative homology (for a sub-∆-complex
A of X), and a SES of chain groups, giving a LES sequence for the pair,
· · · → H∆

n (A) → H∆
n (X) → H∆

n (X, A) → H∆
n−1(A) → · · ·

The proof of the isomorphism between the two homologies proceeds by first showing that
the inclusion induces an isomorphism on k-skeleta, H∆

n (X(k)) ∼= Hn(X(k)), and this goes
by induction on k using the Five Lemma applied to the diagram

H∆
n+1(X

(k), X(k−1)) → H∆
n (X(k−1)) → H∆

n (X(k)) → H∆
n (X(k), X(k−1)) → H∆

n−1(X
(k−1))

↓ ↓ ↓ ↓ ↓
Hn+1(X(k), X(k−1)) → Hn(X(k−1)) → Hn(X(k)) → Hn(X(k), X(k−1)) → Hn−1(X(k−1))

The second and fifth vertical arrows are, by an inductive hypothesis, isomorphisms. The
first and fourth vertical arrows are isomorphisms because, essentially, we can, in each case,
identify these groups. Hn(X(k), X(k−1)) ∼= Hn(X(k)/X(k−1)) ∼= H̃n(∨Sk) are either 0 (for
n �= k) or ⊕Z (for n = k), one summand for each n-simplex in X . But the same is true for
H∆

n (X(k), X(k−1)); and for n = k the generators are precisely the n-simplices of X . The
inclusion-induced map takes generators to generators, so is an isomorphism. So by the
Five Lemma, the middle rows are also isomorphisms, completing our inductive proof.

Returning to H∆
n (X) I∗→Hn(X), we wish now to show that this map is an isomorphism.

Any [z] ∈ Hn(X) is represented by a cycle z =
∑

aiσi for σi : ∆n → X . But each
σi(∆n) is a compact subset of X , and so meets only finitely-many cells of X . This is
true for every singular simplex, and so there is a k for which all of the simplices map
into X(k), and so we may treat z ∈ Cn(X(k). Thought of in this way, it is still a cycle,
and so [z] ∈ Hn(X(k)) ∼= H∆

n (X(k)) so there is a z′inC∆
n (X(k)) and a w ∈ Cn+1(X(k))

with i#z′ − z = ∂w. But thinking of z′inC∆
n (X) and w ∈ Cn+1(X), we have the same

equality, so [z′] ∈ H∆
n (X) and i∗[z′] = [z] . So i∗ is surjective. If i∗([z]) = 0, then the cycle

z =
∑

aiσi is a sum of characteristic maps of n-simplices of X , and so can be thought of
as an element of C∆

n (Xn)) . Being 0 in Hn(X), z = ∂w for some w ∈ Cn+1(X) . But
as before, w ∈ Cn(Xr)) for some r, and so thought of as an element of the image of the
isomorphism i∗ : H∆

n (X(r)) → Hn(X(r)), i∗([z]) = 0, so [z] = 0 . So z = ∂u for some
u ∈ C∆

n+1(X
r)) ⊆ C∆

n+1(X) . So [z] = 0 in H∆
n (X). Consequently, simplicial and singular

homology groups are isomorphic.

The isomorphism between simplicial and singular homology provides very quick proofs of
several results about singular homology, which would other would require some effort:
If the ∆-complex X has no simplices in dimension greater than n, then Hi(X) = 0 for all
i > n.
This is because the simplicial chain groups C∆

i (X) are 0, so H∆
i (X) = 0 .
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If for each n, the ∆-complex X has finitely many n-simplices, then Hn(X) is finitely
generated for every n.

This is because the simplicial chain groups C∆
n (X) are all finitely generated, so H∆

n (X),
being a quotient of a subgroup, is also finitely generated. [We are using here that the
number of generators of a subgroup H of an abelian group G is no larger than that for G;
this is not true for groups in general!]

Some more topological results with homological proofs: The Klein bottle and real pro-
jective plane cannot embed in R

3. This is because a surface Σ embedded in R
3 has a

(the proper word is normal) neighborhood N(Σ), which deformation retracts to Σ; lit-
erally, it is all points within a (uniformly) short distance in the normal direction from
the point on the surface Σ. Our non-embeddedness result follows (by contradiction) from
applying Mayer-Vietoris to the pair (A, B) = (N(Σ), R3 \ N(Σ)), whose intersection is the
boundary F = ∂N(Σ) of the normal neighborhood. The point, though, is that F is an
orientable surface; the outward normal (pointing away from N(Σ)) at every point, taken
as the first vector of a right-handed orientation of R

3 allows us to use the other two vectors
as an orientation of the surface. So F is one of the surface Fg above whose homologies we
just computed. This gives the LES H̃2(R3) → H̃1(F ) → H̃1(A) ⊕ H̃1(B) → H̃1(R3)
which renders as 0 → Z

2g → H̃(Σ) ⊕ G → 0 , i.e., Z
2g ∼= H̃(Σ) ⊕ G . But

for the Klein bottle and projective plane (or any closed, non-orientable surface for that
matter), H̃1(Σ) has torsion, so it cannot be the direct summand of a torsion-free group!
So no such embedding exists. This result holds more generally for any 2-complex K whose
(it turns out it would have to be first) homology has torsion; any embedding into R

3 would
have a neighborhood deformation retracting to K, with boundary a (for the exact same
reasons as above) closed orientable surface.

Invariance of Domain: If U ⊆ R
n and f : U → R

n is continuous and injective, then
f(U) ⊆ R

n is open.

We will approach this through the Brouwer-Jordan Separation Theorem: an embed-
ded (n − 1)-sphere in R

n separates R
n into two path components. And for this we need

to do a slightly unusual homology calculation:

For k < n and h : Ik → Sn an embedding of a k-cube in to the n-sphere, H̃i(Sn\h(Ik)) = 0
for all i.

Here I = [−1, 1] . The proof proceeds by induction on k. For k = 0, Sn \ h(Ik) ∼= R
n,

and the result follows. Now suppose the result os true for all embeddings of C = Ik−1,
but is false for some embedding h : Ik → Sn and some i. Then if we divide the cube
along its last coordinate, say, as Ik−1 × [−1, 0] = C × [−1, 0] and C × [0, 1], we can
set A = Sn \ h(C × [−1, 0]), B = Sn \ h(C × [0, 1]), A ∪ B = Sn \ h(C × {0}), and
A ∩ B = Sn \ h(Ik) . These sets are all open, since the image under h of the various sets
is compact, hence closed. By hypothesis, A ∪ B = Sn \ h(C × {0}) has trivial reduced
homology, while A ∩ B = Sn \ h(Ik) has non-trivial reduced homology in some dimension
i. Then the Mayer-Vietoris sequence

· · · → H̃i+1(A ∪ B) → H̃i(A ∩ B) → H̃i(A) ⊕ H̃i(B) → H̃i(A ∪ B) → · · ·
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reads 0 → H̃i(A ∩ B) → H̃i(A) ⊕ H̃i(B) → 0 so H̃i(A ∩ B) ∼= H̃i(A) ⊕ H̃i(B) , so at
least one of the groups on the right must be non-trivial, as well. WOLOG H̃i(B) =
H̃(Sn \ h(C × [0, 1])) �= 0. Even more, choosing (once and for all) a non-zero element
[z] ∈ H̃I(A ∩ B), snce its image in the direct sum is non-zero, it’s coordinate in (say)
H̃i(B) is non-zero.

Continuing with: For k < n and h : Ik → Sn an embedding of a k-cube in to the
n-sphere, H̃i(Sn \ h(Ik)) = 0 for all i.

We’ve shown how we can throw away half of the cube without losing a (chosen) non-
zero homology element. Now we continue inductively, cutting C × [0, 1] in two along
the last coordinate as C × [0, 1/2], C × [1/2, 1] and repeat the same argument. We fnd
that H̃i(Sn \ h(C × [a, b])) �= 0, and [z] maps to a non-zero element under the inclusion-
induced homomorphism.. Continuing inductively, we find a sequence of nested intervals
In = [an, bn] ⊇ [an+1, bn+1] whose lengths tend to zero (so an, bn → x0 ∈ I as n → ∞),
and injective inclusion-induced maps

0 �= H̃i(Sn \ h(In) → · · · → H̃i(Sn \ h(C × In) → H̃i(Sn \ h(C × In+1)
all of which send a certain non-zero element [z] ∈ H̃i(Sn \h(In) to a non-zero element, and
all of which have an inclusion-induced map to H̃i(Sn \h(C ×{x0}) = 0. So there is a non-
trivial element [z] ∈ H̃i(Sn \h(In) which remains non-zero in all H̃i(Sn \h(C×In)), but is
zero in H̃i(Sn\h(C×{x0}). Consequently, z∂w for some chain w =

∑
ajσ

i+1
j ∈ Ci+1(Sn\

h(C × {x0})). Each singular simplex, however, is a map σi+1
j : ∆i+1 → Sn \ h(C × {x0}),

and so has compact image. But the sets Sn \ h(C × In) form a nested open cover of
Sn \ h(C × {x0}), and so of σi+1

j (∆i+1), and so there is an nj with σi+1
j (∆i+1) ⊆ Sn \

h(C × Inj
) . Then setting N =max{nj}, we have σi+1

j : ∆i+1 → Sn \ h(C × IN ) for every
j, so w ∈ Ci+1(Sn \ h(C × IN ), so 0 = [z] ∈ H̃i(Sn \ h(C × IN ), a contradiction. So
H̃i(Sn \ h(Ik)) = 0, and our inductive step is proved.

One immediate consequence of this is that if h : Sk → Sn is an embedding of the k-sphere
into the n-sphere, then thinking of Sk as the union of its upper and lower hemispheres,
Dk

+, Dk
−, each of which is homeomorphic to Ik, we have Dk

+ ∩ Dk
− = Sk−1, the equatorial

(k − 1)-sphere, and so by Mayer-Vietoris we have

· · · → H̃i+1(Sn \ h(Dk
−)) ⊕ H̃i+1(Sn \ h(Dk

+) → H̃i+1(Sn \ h(Sk−1)) → H̃i(Sn \ h(Sk)) →
H̃i(Sn \ h(Dk

−)) ⊕ H̃i(Sn \ h(Dk
+) → · · ·

i.e., H̃i(Sn \h(Sk)) ∼= H̃i+1(Sn \h(Sk−1)) ∼= · · · ∼= H̃i+k(Sn \h(S0)) ∼= H̃i+k(Sn−1) , since
S0 = 2 points, and so Sn \ h(S0) ∼= Sn−1 × R ∼ Sn−1. So H̃i(Sn \ h(Sk)) = 0 unless
i + k = n − 1 (i.e., i = n − k − 1), when it is Z.

In particular, H̃0(Sn \h(Sn−1)) = Z, so we have the Jordan-Brouwer Separation Theorem:
every embedded Sn−1 in Sn has two complementary path-components A, B . With a little
work, one can show that A ∩ B = h(Sn−1 , so the (n − 1)-sphere is the frontier of each
complementary component. [Removing a point from Sn to get R

n does not change the
conclusion (for n > 1); a point does not disconnect an open subset of Sn.]
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When n = 2, the Jordan Curve Theorem (as it is then called) has the additional conse-
quence that the closure of each complementary region is a compact 2-disk, each having
the embedded circle h(S1) as its boundary. This stronger result does not extend to higher
dimensions, without putting extra restrictions on the embedding. This was shown by
Alexander (shortly after publishing an incorrect proof without restrictions) for n = 3;
these examples are known as the Alexander horned spheres.

To prove Invariance of Domain, let U ⊆ R
n ⊆ Sn be an open set, and f : U → R

n ↪→ Sn

be injective and continuous. It suffices to show, for every x ∈ U , that there is an open
neighborhood V with f(x) ⊆ V ⊆ f(U) . Since U is open, there is an open ball Bn centered
at x whose closure Dn is contained in U . f is then an embedding of ∂Dn = Sn−1 into Sn,
and of Dn ∼= In into Sn. By our calculations above, Sn\f(Sn−1) has two path components
A, B; being an open set and contained in a locally path-connected space, these are also
the connected components of the complement. But our calculations above also show that
Sn\f(Dn) is path-connected, hence connected, and f(Bn), being the image of a connected
set, is connected. Since f(Bn) ∪ (Sn \ f(Dn)) = Sn \ f(Sn−1 = A ∪ B), it follows that
f(Bn) = A and Sn \ f(Dn) = B (or vice versa). In particular, f(Bn) is open, forming an
open subset of f(U) containing f(x), as desired.

Invariance of Domain in turn implies the “other” invariance of domain; if f : R
n → R

m

is continuous and injective, then n ≤ m, since if not, then composition of f with the
inclusion i : R

m → R
n, i(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0) is injective and continuous

with non-open image (it lies in a hyperplane in R
n), a contradiction.

This also gives the more elementary: if R
n ∼= R

m, via h, then n = m . Another proof: by
composing with a translation, that h(0) = 0, and then we have (Rn, Rn\0) ∼= R

m, (Rm\0),
which gives
H̃i(Sn−1) ∼= Hi+1(Dn, ∂D

n) ∼= Hi+1(Dn, Dn \ 0) ∼= Hi+1(Rn, Rn \ 0) ∼= Hi+1(Rm, Rm \ 0)
∼= Hi+1(Dm, Dm \ 0) ∼= Hi+1(Dm, ∂D

m) ∼= H̃i(Sm−1)

Setting i = n − 1 gives the result, since H̃n−1(Sm−1) ∼= Z implies n − 1 = m − 1 .

Homology and homotopy groups: There are connections between homology groups
and the fundamental (and higher) homotopy groups, provided by what is known as the
Hurewicz map H : πn(X, x0) → Hn(X) . or n = 1 (higher n are similar) the idea
is that elements of π1(X) are loops, which can be thought of as maps γ : S1 → X
(or more precisely, mapping into the path component containing x0), inducing a map
γ∗ : Z = H1(S1) → H1(X) . We define H([γ]) = γ∗(1) . Because homotopic maps give the
same induced map on homology, this really is well-defined map on homotopy classes, i.e.
from π1(X) to H1(X). [A different view: a loop γ : (I, ∂I) → (X, x0) defines a singular 1-
chain which, being a loop, has zero boundary, so is a 1-cycle. Since based homotopic maps
give homologous chains (essentially by the same homotopy invariance property above), we
get a well-defined map π1(X, x0) → H1(X).
Since as 1-chains, the concatenation γ ∗ δ of two loops is homologous to the sum γ + δ -
the map K : I × I → X given by K(s, t) = (γ ∗ δ)(s), after crushing the left and right
vertical boundaries to points, can be thought of as a singular 2-simplex with boundary
γ + δ − (γ ∗ δ) - the map H is a homomorphism.
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When X is path-connected, this map H : π1(X) → H1(X) is onto . [When it isn’t it maps
onto the summand of H1(X) corresponding to the path component containing our chosen
basepoint.] To see this, note that any cycle z ∈ Z1(X) can be represented as a sum of
singular 1-simplices

∑
σ1

i , i.e. we can (by reversing the orientations on simplices to make
coefficient positive, and then writing a multiple of a simplex as a sum of simplices) assume
all coefficients in our sum are 1. Then 0 = ∂z =

∑
(σ1

i (0, 1)−σ1
i (1, 0)) means that, starting

with any positive term, we can match it with a negative term to cancel that term, which is
paired with a postive term, having a matching negative term, etc., until the initial positive
term is cancelled. This sub-chain represents a collection of paths which concatenate to a
loop, so z = (this loop) + (the remainiung terms) . Induction implies that z can be written
as a sum of (sums of paths forming loops), which is (as above) homologous to the sum of
loops. Choosing paths from the start of these loops to our chosen basepoint (which is the
only place where we use path connectedness, we can concatenate the based loops γ ∗ σ ∗ γ
to a single based loop η, which under H is sent to a chain homologous to z. So H[η] = [z]
.

Since H1(X) is abelian (and π1(X) need not be), the kernel of H contains the commuta-
tor subgroup [π1(X), π1(X)] . We now show that, if X is path connected, H induces
an isomorphism H1(X) ∼= π1(X)/[π1(X), π1(X)] . To show this, it remains to show
that ker(H) ⊆ [π1(X), π1(X)] . Or put differently, the ineduced map from π1(X)ab =
π1(X)/[π1(X), π1(X)] (i.e., π1(X), written using additive notation) to H1(X) is injective.
So suppose [γ] ∈ π1(X) and, thought of as a singular 1-simplex, γ = ∂w for some 2-simplex
w =

∑
aiσ

2
i . As before, we may assume that all ai = 1, by reversing orientation and

writing multiples as sums. By adding “tails” from each image of a vertex of each σ2
i to our

chosen basepoint x0, we may assume that the image of every face of ∆2, under the σi , is a
loop at x0 (by essentially replacing each σi with a τi which first collapses little triangle at
each vertex to arcs, maps the resulting central triangle via σi, and the arcs via the paths).

Once we have made this slight alteration, the equation γ = ∂w =
n∑

i=1

2∑
j=0

∂jσi = 0 makes

sense (and is true) in both (C1(X) hence Z1(X) hence) H1(X) and π1(X)ab, the first
essentially by definition and the second because all of the ∂jσi are loops at x0 and, in
π1(X), (∂0σi)∂1σi(∂2σi) is null-homotopic, so is trivial in π1(X). Written additively, this
means that in π1(X)ab , ∂0σi − ∂1σi + ∂2σi = 0. So γ = 0 in π1(X)ab , as desired.

he Hurewicz map H : π1(X) → H1(X) induces, when X is path-connected, an isomorphism
from π1(X)/[π1(X), π1(X)] to H1(X) . This result can be used in two ways; knowing a
(presentation for) π1(X) allows us to compute H1(X), by writing the relators additively,
giving H1(X) as the free abelian group on the generators, modulo the kernel of the “pre-
sentation matrix” given by the resulting linear equations. Conversely, knowing H1(X)
provides information about π1(X). For example, a calculation on the way to invariance of
domain implied that for every knot K in S3 (i.e., the image of an embedding h : S1 ↪→ S3),
H1(S3\K) ∼= bbz . This implies that the abelianization of GK = π1(S3\K) (i.e., the largest
abelian quotient of GK is Z. But this in turn implies that for every integer n ≥ 2, there
is a unique surjective homomorphism GK → Zn, since such a homomorphism must factor
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through the abelianization, and there is exactly one surjective homomorphism Z → Zn

! Consequently, there is a unique (normal) subroup (the kernel of this homomorphism)
Kn ⊆ GK with quotient Zn . Using the Galois correspondence, there is a (unique) covering
space Xn of X = S3 \K corresponding to Kn, called the n-fold cyclic covering of K . This
space is determined by K and n, and so its homology groups are determined by the same
data. And even though homology cannot distinguish between two knot complements, K,
K ′, it might be the case that homology can distinguish between their cyclic coverings.
Consequently, if H1(Xn) �∼= H1(X ′

n), then K and K ′ have non-homeomorphic comple-
ment, and so represent “different” embeddings, hence different knots. In practice, one
can compute presentations for π1(Xn) (in several different ways), and so one can compute
H1(Xn), providing an effective way to use homology to distinguish knots! This approach
was ultimately formalized (by Alexander) into a polynomial invariant of knots, known as
the Alexander polynomial.

Computing the homology of the cyclic coverings can be done in several ways. The Reidemeister-
Schreier method will allow one to compute a presentation for the kernel of a homomor-
phism ϕ : G → H, given a presentation of G and a transversal of the map, which is a
representative of each coset of G modulo the kernel. Abelianizing this will give homology
computation. Another approach uses Seifert surfaces, orientable surfaces with ∂Σ = K,
to cut S3 \ K open along. Writing S3 \ K = (S3 \ N(Σ)) ∪ N(Σ) allows us to use Mayer-
Vietoris to compute homology. But the cyclic covering spaces can be built by “unwinding”
this view of S3 \ K; instead of gluing the two ends of N(K) to the same S3 \ N(Σ), we
can take n copies of S3 \ N(Σ) and glue them together in a circle. Mayer-Vietoris again
tells us how to compute the homology of the resulting space. Details may be found on the
accompanying pages taken from Rolfsen’s “Knots and Links”.
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