The Fundamanetal Group:

Basic concept: homotopy

 $f, g: X \to Y$ are *homotopic* if there is $H: X \times I \to Y$ with H(x, 0) = f(x), H(x,1) = g(x) for all $x \in X$. [equivalence relation] Loops at $x_0: \gamma: (I, \partial I) \to (X, \{x_0\})$ [map of pairs] I = [0, 1]Elements of $\pi_1(X, x_0)$ are homotopy classes of loops at x_0 [homotopy of pairs] multiplication = concatenation: $\alpha * \beta(t) = \begin{cases} \alpha(2t), & \text{if } t \le 1/2 \\ \beta(2t-1) & \text{if } t > 1/2 \end{cases}$ Multiplication of homotopy classes is well-defined: $\alpha \simeq \alpha', \beta \simeq \beta'$ $\Rightarrow \alpha * \beta \simeq \alpha' * \beta'$ The (class of the) constant map is the identity: $c_{x_0} * \gamma \simeq \gamma \simeq \gamma * c_{x_0}$ Associativity from $(\alpha * \beta) * \gamma \simeq \alpha * (\beta * \gamma)$ Inverse is (the class of) the reverse of γ : $\overline{\gamma}(t) = \gamma(1-t)$ $\gamma * \overline{\gamma} \simeq c_{r_0} \simeq \overline{\gamma} * \gamma$

Induced homomorphisms: A map $f : (X, x_0) \to (Y, y_0)$ induces a homomorphism $f_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$ by $f_*[\gamma] = [f \circ \gamma]$.

(In)dependence on basepoint x_0 : if γ is a path from x_0 to x_1 , then $\widehat{\gamma}([\alpha]) = [\gamma * \alpha * \overline{\gamma}]$ is an isomorphism $\widehat{\gamma} : \pi_1(X, x_0) \to \pi_1(X, x_1)$. (Inverse is $(\overline{\gamma}) = (\widehat{\gamma})^{-1}$)