
The Fundamental Theorem of Algebra:

Every non-constant polynomial has a complex root: for every f(z) = anzn + · · ·+ a0

with n ≥ 1 and an �= 0, ai ∈ C, there is a z0 ∈ C with f(z0) = 0.
Proof: Thinking of C = R2, if not, then f is a map R2 → R2 \ {0}. We can divide
through by an without affecting this, and assume that f is monic.
Setting γm(t) = f(m cos(2πt), m sin(2πt)), then γm : S1 → R

2 \{0} extends to a map
Γm : D2 → R2 \ {0}, as Γn(x) = f(mx), so γm is null-homotopic for all m.
But R2 \ {0} def. retracts to the unit circle (by r(z) = z/|z|), so π1(R2 \ {0}) ∼= Z,
and by the above all of the [γm] represent 0 in Z, and so r∗[γm] = [r◦γm] = 0, as well.
But for large m we can compute w(r ◦ γm) = n; since n ≥ 1, this is a contradiction.

γm(t) = f(me2πit) = mn(e2πnit + an−1
m e2π(n−1)it + · · ·+ a0

mn ) = mn(e2πnit + R(m, t)),
so r ◦ γm(t) = (e2πnit + R(m, t))/|e2πnit + R(m, t)|. But as m → ∞, R(m, t) → 0
uniformly in t; |R(m, t)| = |an−1

m e2π(n−1)it + · · · + a0
mn | ≤ |an−1|

m + · · · + |a0|
mn → 0 .

So for large enough m |R(m, t)| < 1
2 for all t,

and then for every s ∈ I, |e2πnit + sR(m, t)| �= 0, since
|e2πnit + sR(m, t)| ≥ |e2πnit| − s|R(m, t)| ≥ |e2πnit| − |R(m, t)| ≥ 1

2 .

Then the homotopy H(t, s) = (e2πnit + sR(m, t))/|e2πnit + sR(m, t)| is well-defined
and continuous, H : I × I → S1, and defines a homotopy from α : t 	→ e2πnit

(at s = 0) to r ◦ γm (at s = 1). Since w(α) = n, for large enough m, w(r ◦ γm) = n.

This contradiction implies that f must have a root, as desired.


