The Fundamental Theorem of Algebra:

Every non-constant polynomial has a complex root: for every $f(z) = a_n z^n + \cdots + a_0$ with $n \ge 1$ and $a_n \ne 0$, $a_i \in \mathbb{C}$, there is a $z_0 \in \mathbb{C}$ with $f(z_0) = 0$.

Proof: Thinking of $\mathbb{C} = \mathbb{R}^2$, if not, then f is a map $\mathbb{R}^2 \to \mathbb{R}^2 \setminus \{0\}$. We can divide through by a_n without affecting this, and assume that f is monic.

Setting $\gamma_m(t) = f(m\cos(2\pi t), m\sin(2\pi t))$, then $\gamma_m : S^1 \to \mathbb{R}^2 \setminus \{0\}$ extends to a map $\Gamma_m : D^2 \to \mathbb{R}^2 \setminus \{0\}$, as $\Gamma_n(x) = f(mx)$, so γ_m is null-homotopic for all m.

But $\mathbb{R}^2 \setminus \{0\}$ def. retracts to the unit circle (by r(z) = z/|z|), so $\pi_1(\mathbb{R}^2 \setminus \{0\}) \cong \mathbb{Z}$, and by the above all of the $[\gamma_m]$ represent 0 in \mathbb{Z} , and so $r_*[\gamma_m] = [r \circ \gamma_m] = 0$, as well. But for large m we can compute $w(r \circ \gamma_m) = n$; since $n \ge 1$, this is a contradiction.

 $\gamma_m(t) = f(me^{2\pi it}) = m^n (e^{2\pi nit} + \frac{a_{n-1}}{m} e^{2\pi (n-1)it} + \dots + \frac{a_0}{m^n}) = m^n (e^{2\pi nit} + R(m,t)),$ so $r \circ \gamma_m(t) = (e^{2\pi nit} + R(m,t))/|e^{2\pi nit} + R(m,t)|.$ But as $m \to \infty, R(m,t) \to 0$ uniformly in $t; |R(m,t)| = |\frac{a_{n-1}}{m} e^{2\pi (n-1)it} + \dots + \frac{a_0}{m^n}| \le \frac{|a_{n-1}|}{m} + \dots + \frac{|a_0|}{m^n} \to 0$.

So for large enough
$$m |R(m,t)| < \frac{1}{2}$$
 for all t ,
and then for every $s \in I$, $|e^{2\pi nit} + sR(m,t)| \neq 0$, since
 $|e^{2\pi nit} + sR(m,t)| \ge |e^{2\pi nit}| - s|R(m,t)| \ge |e^{2\pi nit}| - |R(m,t)| \ge \frac{1}{2}$.

Then the homotopy $H(t,s) = (e^{2\pi nit} + sR(m,t))/|e^{2\pi nit} + sR(m,t)|$ is well-defined and continuous, $H: I \times I \to S^1$, and defines a homotopy from $\alpha: t \mapsto e^{2\pi nit}$ (at s = 0) to $r \circ \gamma_m$ (at s = 1). Since $w(\alpha) = n$, for large enough $m, w(r \circ \gamma_m) = n$.

This contradiction implies that f must have a root, as desired.