
Seifert-van Kampen Theorem:

If X = U ∪V with U ,V and U ∩V = W open and path-connected, and x0 ∈ W , then
π1(X, x0) is the pushout of π1(U) and π1(V) along π1(W).

The basic idea: a proof in two (and a half) parts.
The inclusions iU : U → X and iV : V → X induce a homomorphism
ϕ : π1(U) ∗ π1(V) → π1(X).
First step: show that ϕ is surjective (using a Lebesgue number argument!). We also
have inclusion-induced homomorphisms from the maps
jU : W → U and jV : W → U .
Second step: show that
ker(ϕ) = 〈{jU∗(γ)jV∗(γ−1) : γ ∈ π1(W )}〉N
(using a Lebesgue number argument!). Therfore, ϕ induces an isomorphism
ϑ : π1(U) ∗π1(W) π1(V) → π1(X), as desired.

The reliance upon a decomposition of X into open sets in the theorem is dictated
by our use of Lebesgue numbers. In practice, we sidestep this (typically annoying)
condition, by decomposing into closed sets X = C ∪ D, but insist that these sets
have open neighborhoods U ,V so that U ,V ,U ∩V deformation retract to C, D, C ∩D
respectively. The closed sets therefore have (essentially) the same fundamental groups
as the open sets, and the analogous result follows. Later we will show how we can
always arrange this hypothesis for most “reasonable” closed subsets of “reasonable”
spaces.



Proof, part one:

To show that ϕ : π1(U) ∗ π1(V) → π1(X) is surjective, we wish, given a loop
γ : (I, ∂i) → (X, x0), to show that γ is homotopic rel endpoints to the concatenation
of loops which each map into either U or V . But U ,V form an open cover of X, so
there is a Lebesgue number 1/n for the cover γ−1(U), γ−1(V) of I. Partitioning I
into n equal pieces, and writing γi = γ|[ i−1

n , i
n ], each γi maps into U or V . As in our

proof of π1(S1) ∼= Z, we amalgamate the subintervals until the subsets they map into
alternate between the two as we traverse the interval I.

Calling the resulting intervals Ij = [zj−1, zj ], j = 1, . . . , m, we then have that
γ(zj) ∈ U ∩ V for every j. Since U ∩ V is path-connected, we can find a path αj in
U ∩ V from zj to x0. We will recycle the notation γj = γ|[zj−1,zj ]; then

γ 	 γ0 ∗ · · · ∗ γm 	 γ0 ∗ (α1 ∗ α1) ∗ γ1 ∗ · · · ∗ γm−1 ∗ (αm−1 ∗ αm−1) ∗ γm

	 (γ0 ∗ α1) ∗ (α1 ∗ γ1 ∗ α2) ∗ · · · ∗ (αm−2 ∗ γm−1 ∗ αm−1) ∗ (αm−1 ∗ γm)
= η0 ∗ · · · ∗ γm,
which is a concatenation of loops (based at x0) which alternately map into U and V .

To be completely pedantic, if we let ωj=ηj with its codomain changed from X to U
or V as appropriate (the ωi are continuous, since restriction of codomain preserves
continuity (using subspace topologies)), then [ω0] · · · · · [ωm] ∈ π1(U) ∗ π1(V), and
ϕ([ω0] · · · · · [ωm]) = [η0] · · · · · [ηm] = [η0 ∗ · · · ∗ ηm] = [γ], so ϕ is surjective, as desired.



Proof, part two:

It remains to show that ker(ϕ) = 〈{jU∗(γ)jV∗(γ−1) : γ ∈ π1(W )}〉N = H.

The containment ⊇ follows by showing that ϕ(jU∗(γ)jV∗(γ−1)) = 1 in π1(X); but
ϕ(jU∗(γ)jV∗(γ−1)) = iU∗jU∗(γ) · iV∗jV∗(γ−1)) = (iU ◦ jU )∗(γ) · (iV ◦ jV)∗(γ−1). But
since both (iU ◦ jU ) and (iV ◦ jV) are equal to the inclusion map ι : U ∩ V → X, we
have ϕ(jU∗(γ)jV∗(γ−1)) = ι∗(γ) · ι∗(γ−1) = ι∗(γ · γ−1) = ι∗(1) = 1.

For the opposite containment, suppose that ϕ([γ1] · · · · · [γn]) = [γ1∗· · ·∗γn] = 1 where
each γi maps into U or V . Then we have a homotopy rel endpoints H : I × I → X
from γ1∗· · ·∗γn to the constant map at x0. We wish to show that [γ1]·· · ··[γn] is equal,
in π1(U) ∗ π1(V), to a product of conjugates of elements of the form jU∗(γ)jV∗(γ−1).

As before, we find a Lebesgue number ε > 0 for the open cover H−1(U), H−1(V) of
I × I, so that there is an N so that every 1

N × 1
N subsquare in I × I maps into U

or V under H. Partitioning I × I into N2 squares, these squares form N horizontal
strips, each of height 1/N .
The proof proceeds by showing that each of the loops αi : t �→ H(t, (N − i)/N) lies in
H, by induction on i; the initial case i = 0 is the constant loop, which is immediate,
while the case i = N is our desired result. For the inductive step we show that if the
bottom of one of our horizontal strips lies in H then the top does, as well.

The one delicate point in what follows is that γ1∗· · ·∗γn is given as an explicit product
of loops in U ,V , and we must remember in our deformations to always be dealing
with loops into these two sets, in order to show that in the free product γ1 ∗ · · · ∗ γn

is a product of conjugates of the form we desire.



We have our domain cut into an n × n grid, so that each subsquare maps into U or
V ; pick one for each. As before, we amalgamate horizontally adjacent squares if they
are labeled the same; then each horizontal strip is cut into rectangles which alternate
their label. The vertical edges of the rectangles then map into U) ∩ V , and so their
endpoints do, as well. Join each of these endpoints to our basepoint by paths ηi,j .
Then the top and bottoms of the strips are
γi,1 ∗ · · · γi,m 	 γi,1 ∗ (ηi,1 ∗ ηi,1) ∗ γi,2 ∗ · · · ∗ γi,m−1 ∗ (ηi,m−1 ∗ ηi,m−1) ∗ γi,m

	 (γi,1 ∗ ηi,1) ∗ (ηi,1 ∗ γi,2 ∗ ηi,2) ∗ · · · ∗ γi,m−1 ∗ ηi,m−1) ∗ (ηi,m−1 ∗ γi,m) is a product
of loops in U) and V .

Our real inductive hypothesis is that the bottom of thr strip has a partition and
collection of paths to the basepoint in U ∩ V from those partition points so that the
resulting loops (as above), as an element of π1(U)) ∗ π1(V), lies in H. (Note that
this is immediate for the bottom of the square; it is literally written as products of
loops and their inverses (since we go up and down each path).) The first point is that
the partitioning coming from the strip and the paths chosen there also express the
bottom edge as an element of H. This is because we can add the paths from one to
the other without changing the element (the added paths map into U ∩ V , so change
nothing, up to homotopy), but then when we change perspectives between the two
sets of paths some of the sub-edges may change their label, and these subedges then
map into U ∩V . But this change of label is precisely the same as inserting an element
of the form α = jU∗(γ)−1jV∗(γ) (or its inverse) into our group element; multiplication
by α literally removes jU∗(γ) and replaces it with jV∗(γ); its inverse does the reverse.



Dealing with the horizontal strip itself is more straightforward. The top of the strip
is homotopic to the bottom, and is equal, in π1(U)) ∗ π1(V) to the bottom strip
with pairs of loops inserted, namely (top path)*(vertical edge)*(bottom path) and
its inverse. These inserted loops all map into U ∩ V , but it is thought of as one copy
mapping into U and the other into V , to match the subset that each subrectangle
maps into. Again, this amounts to inserting an element of H into an element of
π1(U)) ∗ π1(V) which, by the inductive hypothesis, also lies in H. Therefore the top,
partitioned as the subrectangles dictate, lies in H.

This insertion process leaves us in H, because:
If uv ∈ H and w ∈ H, then uwv = (uwu−1)(uv) ∈ H, since H is normal, so
uwu−1 ∈ H.

By induction, we are done: ker(ϕ) ⊆ H, so ker(ϕ) = H, as desired.


