
Some examples:

Fundamental groups of graphs: Every finite connected graph Γ has a maximal
tree T , a connected subgraph with no simple circuits. Since any tree is the union
of smaller trees joined at a vertex, we can, by induction, show that π1(T ) = {1}
. In fact, if e is an outermost edge of T , then T deformation retracts to T \ e, so,
by induction, T is contractible. Consequently (Hatcher, Proposition 0.17), Γ and the
quotient space Γ/T are homotopy equivalent, and so have the same π1. But Γ/T = Γn

is a bouquet of n circles for some n. If we let U = a neighborhood of the vertex in
Γn, which is contractible, then, by singling out one petal of the bouquet, we have

Γn = (Γn−1 ∪ U) ∪ (Γ1 ∪ U) = X1 ∪ X2

with Γk ∪ U ∼ (Γk ∪ U)/U ∼= Γk. Since X1 ∩ X2 = U ∼ ∗, we have
π1(Γn) ∼= π1(Γn−1) ∗1 π1(Γ1) = π1(Γn−1) ∗ Z

So, by induction, π1(Γ) ∼= π1(Γn) ∼= Z ∗ · · · ∗ Z = F (n), the free group on n letters,
where n = the number of edges not in a maximal tree for Γ. The generators for the
group consist of the edges not in the tree, prepended and appended by paths to the
basepoint.



Gluing on a 2-disk: f : ∂D
2 → X continuous, then we construct the quotient space

Z = (X
∐

D
2)/{x � f(x) : x ∈ ∂D

2}, the result of gluing D
2 to X along f .

We can use Seifert - van Kampen to compute π1 of the resulting space; if we wish
to be careful with basepoints x0, we include a rectangle R, the mapping cylinder of
a path γ running from f(1, 0) to x0, glued to D

2 along the arc from (1/2, 0) to (1, 0)
(see figure). This space Z+ deformation retracts to Z; it is simpler work with the
basepoint y0 lying above x0.
Write D1 = {x ∈ D

2 : ||x|| < 1} ∪ (R \ X) and D2 = {x ∈ D
2 : ||x|| > 1/3} ∪ R ,

then we can write Z+ = D+ ∪ (X ∪ D2) = X1 ∪ X2. But since X1 � ∗ , X2 � X (it
is essentially the mapping cylinder of the maps f and γ ) and X1 ∩ X2 = {x ∈ D

2 :
1/3 < ||x|| < 1} ∩ (R \ X) � S1, we find that
π1(Z, y0) ∼= π1(X2, y0) ∗Z {1} = π1(X2)/ < Z >N∼= π1(X2)/ < [δ ∗ γ ∗ f ∗ γ ∗ δ] >N

Use δ for a change of basepoint isomorphism, and then a homotopy equivalence from
X2 to X (fixing x0), we have, if π1(X, x0) =< Σ|R > , then π1(Z) =< Σ|R∪{[γ ∗f ∗
γ]} > . So the effect of gluing on a 2-disk on the π1 is to add a new relator, namely
the word represented by the attaching map (adjusting for basepoint).
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Wirtinger presentations for knot complements:

A knot K is (the image of) an embedding h : S1 ↪→ R
3. Wirtinger gave a prescription

for taking a planar projection of K and producing a presentation of π1(R3 \ K) =
π1(X). The idea: think of K as lying on the projection plane, except near the
crossings, where it arches under itself. We build a CW-complex Y ⊆ X that X
deformation retracts to. A presentation for π1(Y ) gives us π1(X).
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To build Y , glue rectangles arching under the strands of K to a horzontal plane lying
just above the projection plane of K. At the crossing, the rectangle is glued to the
rectngle arching under the over-strand. X deformation retracts to Y ; the top half of
R

3 deformation retracts to the top plane, the parts of X inside the tubes formed by
the rectangles radially retract to the boundaries of the tubes, and the bottom part
of X vertically retracts onto Y . Formally, we should really keep a “slab” above the
plane, to give us a place to run arcs to a fixed basepoint in the interior of the slab.



We think of Y as being built up from the slab C, by gluing on annuli Ai
∼= S1 × I,

one for each rectangle Ri glued on; the rectangle Si lying above Ri in the bottom of
the slab C is the other half of the annulus. Then we glue on the 2-disks Dj , one for
each crossing of the knot projection. A little thought shows that there are as many
annuli as disks; the annuli correspond to the unbroken strands of the knot projetion,
which each have two ends, and each crossing is where two ends terminate (so there
are two ends for every Ai and two ends for every Dj , so there are half as many of
each as there are total number of ends). To make sure that all of our interections are
path connected, and to formally use a single basepoint in all of our computations, we
join every one of the annuli and disks to a basepoint lying in the slab by a collection
of (disjoint) paths.

Now starting with the slab (with π1 = 1), add the Ai one at a time; each has π1 = Z,
generated by a loop which travels once around the S1-direction, and its intersection
with C∪ the previously glued on annuli is the rectangle Si, which is simply connected.
So, inductively, π1(C∪A1∪· · ·∪Ai) ∼= π1(C∪A1∪· · ·∪Ai−1)∗π1(Ai) ∼= F (i−1)∗Z ∼=
F (i) is the free group on i letters, so, adding all n (say) of the annuli yields F (n). Then
we glue on the n 2-disks Dj ; these add n relators to the presentation 〈x1, . . . , xn|〉. To
determine the relators, choose specific generators for our π1(Ai), by orienting the knot
(choosing a direction to travel around it) and choosing the loop which goes counter-
clockwise around the annulus, when you face in the direction of the orientation.
Going around the boundary of the 2-disk Dj spells out the word xrxsx

−1
r x−1

t or
xrx

−1
s x−1

r xt reading counter-clockwise, depending on orientations. Carrying this out
for every 2-disk completes the presentation of π1(Y ) ∼= π1(X).
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With practice, it becomes completely routine to read off a presentation for the fun-
damental group of R

3 \ K from a projection of K. For example, from the projection
above, we have
π1(R3\K) ∼= 〈x1, . . . , x8|x8x1 = x2x8, x2x7 = x8x2, x5x8 = x1x5, x1x5 = x6x1, x3x6 =
x7x3, x7x2 = x3x7, x3x2 = x2x4, x7x4 = x5x7〉


