
Lifting properties:

Covering spaces of a (suitably nice) space X have a very close relationship to π1(X, x0).

Homotopy Lifting Property: If p : ˜X → X is a covering map, H : Y × I → X is
a homotopy, H(y, 0) = f(y), and ˜f : Y → ˜X is a lift of f (i.e., p ◦ ˜f = f), then there
is a unique lift ˜H of H with ˜H(y, 0) = ˜f(y) .

In particular, applying this property in the case Y = {∗}, where a homotopy
H : {∗} × I → X is really just a a path γ : I → X, we have the
Path Lifting Property: Given a covering map p : ˜X → X, a path γ : I → X
with γ(0) = x0, and a point x̃0 ∈ p−1(x0), there is a unique path γ̃ lifting γ with
γ̃(0) = x̃0.
An immediate consequence:

If p : ( ˜X, x̃0) → (X, x0) is a covering map, then the induced homomorphism
p∗ : π1( ˜X, x̃0) → π1(X, x0) is injective.

Proof: γ : (I, ∂I) → ( ˜X, x̃0) a loop with p∗([γ]) = 1 in π1(X, x0). There is
H : (I × I, ∂I × I) → (X, x0) interpolating between p ◦ γ and the constant path. By
homotopy lifting, there is a homotopy ˜H from γ to the lift of the constant map at x0.
The vertical sides s �→ ˜H(0, s), ˜H(1, s) are also lifts of the constant map, beginning
from ˜H(0, 0), ˜H(1, 0) = γ(0) = γ(1) = x̃0, so are the constant map at x̃0. So the lift
at the bottom is the constant map at x̃0. So ˜H represents a null-homotopy of γ, so
[γ] = 1 in π1( ˜X, x̃0).



Even more, p∗(π1( ˜X, x̃0))) ⊆ π1(X, x0) is precisely the elements given by loops at x0,
whose lifts to paths starting at x̃0, are loops. If γ lifts to a loop γ̃, then p ◦ γ̃ = γ,
so p∗([γ̃]) = [γ] . If p∗([γ̃]) = [γ], then γ � p ◦ γ̃ rel endpoints; the homotopy lifts
to a homotopy b/w the lift of γ at x̃0 and the lift of p ◦ γ̃ at x̃0 (which is γ̃, since
γ̃(0) = x̃0 and lifts are unique). So the lift of γ is a loop, as desired.

Proof of H.L.P.: lift maps a little bit at a time! Cover X by evenly covered open
sets Ui. For each fixed y ∈ Y , since I is compact and the sets H−1(Ui) form an open
cover of Y × I, the Tube Lemma provides an open neighborhood Vy of y in Y and
finitely many p−1Ui which cover Vy × I .

To define ˜H(y, t) = ˜Hy(t), cut {y}×I into pieces Ij , each mapping into some Uj under
H. Starting from the left, we have (inductively) a lift ˜Hy(tj) of the left endpoint tj of
Ij to ˜X, and a homeo hj : Uj → the component of its inverse image of Uj containing
˜Hy(tj). Then define ˜Hy on Ij to be hj ◦Hy. By induction, ˜H(y, t) is defined for all t
(and y). This definition is independent of the partition {y}× I, by the usual process
of taking the union of the partitions, and noticing that the choice of hj is unique. (If
we change the open cover, we can compare using the intersections; the choice of hj ’s
will be the same.) ˜H is a lift of H since p◦ ˜H = p◦(hj ◦H) = (p◦hj)◦H = I ◦H = H.
˜H is continuous since for y near y0 we can use the same partitions and the same open
cover (because of our tube lemma condition), which means that we use the same
maps hj to lift; the pasting lemma implies continuity.



So, for example, if we build a 5-sheeted cover of the bouquet of 2 circles, as before,
(after choosing a maximal tree upstairs) we can read off the images of the generators of
the fundamental group of the total space; we have labelled each edge by the generator
it traces out downstairs, and for each edge outside of the maximal tree chosen, we
read from basepoint out the tree to one end, across the edge, and then back to the
basepoint in the tree. In our example, this gives:

< ab, aaab−1, baba−1, baa, ba−1bab−1, bba−1b−1| >
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This is (from its construction) a copy of the free group on 6 letters, in the free group
F (a, b) . In a similar way, by explicitly building a covering space, we find that the
fundamental group of a closed surface of genus 3 is a subgroup of the fundamental
group of the closed surface of genus 2.



The cardinality of a point inverse p−1(y) is, by the evenly covered property, constant
on (small) open sets, so the set of points of x whose point inverses have any given
cardinality is open. Consequently, if X is connected, this number is constant over all
of X, and is called the number of sheets of the covering p : ˜X → X .

The number of sheets of a covering map can also be determined from the fundamental
groups:

Proposition: If X and ˜X are path-connected, then the number of sheets of a covering
map equals the index of the subgroup H = p∗(π1( ˜X, x̃0) in G = π1(X, x0) .

—bf Proof: Choose loops {gα = [γα]}, one in each of the (right) cosets of H in G. Lift
them to loops based at x̃0; they will have distinct endpoints. (If γ̃1(1) = γ̃2(1), then
by uniqueness of lifts, γ1 ∗ γ2 lifts to γ̃1 ∗ γ̃2, so it lifts to a loop, so γ1 ∗ γ2 represents
an element of p∗(π1( ˜X, x̃0), so they are in the same coset.) Conversely, every point
in p−1(x0) is the endpoint of one of these lifts, since we can construct a path γ̃ from
x̃0 to any such point y, giving a loop γ = p◦ γ̃ representing an element g ∈ π1(X, x0).
But then g = hgα for some h ∈ H and α, so γ is homotopic rel endpoints to η ∗γα for
some loop η representing h. But then lifting these based at x̃0, by homotopy lifting, γ̃
is homotopic rel endpoints to η̃, which is a loop, followed by the lift γ̃α of γα starting
at x̃0. So γ̃ and γ̃α have the same value at 1.
Therefore, lifts of representatives of coset representatives of H in G give a 1-to-
1 correspondence, given by γ̃(1), with p−1x0. In particular, they have the same
cardinality.



The path lifting property (because π([0, 1], 0) = {1}) is a special case of the lifting
criterion: If p : ( ˜X, x̃0) → (X, x0) is a covering map, and f : (Y, y0) → (X, x0) is a
map, where Y is path-connected and locally path-connected, then there is a unique
lift ˜f : (Y, y0) → ( ˜X, x̃0) of f (i.e., f = p ◦ ˜f) ⇔ f∗(π1(Y, y0)) ⊆ p∗(π1( ˜X, x̃0)) .

If ˜f exists, then f∗ = p∗ ◦ ˜f∗, so f∗(π1(Y, y0)) = p∗( ˜f∗(π1(Y, y0))) ⊆ p∗(π1( ˜X, x̃0)).

Conversely, if f∗(π1(Y, y0)) ⊆ p∗(π1( ˜X, x̃0)), we will use path lifting to build the
lift. Given y ∈ Y , choose a path γ in Y from y0 to y and lift the path f ◦ γ in X

to a path ˜f ◦ γ with ˜f ◦ γ(0) = x̃0 . Then define ˜f(y) = ˜f ◦ γ(1) . If well-defined
and continuous, this is our required lift, since (p ◦ ˜f)(y) = p( ˜f(y)) = p(˜f ◦ γ(1)) =
p ◦ ˜f ◦ γ(1) = (f ◦ γ)(1) = f(γ(1)) = f(y). For well-defined, if η is a path from y0 to
y, then γ ∗ η is a loop, so f ◦ (γ ∗ η) = (f ◦ γ) ∗ (f ◦ η) is a loop, giving an element of
f∗(π1(Y, y0)) ⊆ p∗(π1( ˜X, x̃0)), and so lifts to a loop based at x̃0. So f ◦γ and f ◦η lift,
starting at x̃0, to have the same value at 1. So ˜f is well-defined. Continuity comes
from the evenly covered property of p. Given y ∈ Y , and a nbhd ˜U of ˜f(y) in ˜X, we
want a nbhd V of y with ˜f(V) ⊆ ˜U . Choose an evenly covered nbhd Uy for f(y), the
sheet ˜Uy over Uy which contains ˜f(y), and set W = ˜U ∩ ˜Uy. p is a homeo from W to
the open set p(W) ⊆ X. Then if we set V ′ = f−1(p(W)) this is open and contains y,
and so contains a path-connected open nbhd V of y. Then for every point z ∈ V we
compute ˜f(z) by a path γ from y0 to z which first goes to y and then, in V , from y
to z. Then by unique path lifting, since f(V) ⊆ Uy , f ◦ γ lifts to the concatenation
of a path from x̃0 to ˜f(y) and a path in ˜Uy from ˜f(y) to ˜f(z). So ˜f(z) ∈ ˜U .


