Universal covering spaces: A particularly important covering space of a space X
to identify is one which is simply connected. Such a covering is essentially unique:

If X is locally path-connected and has two connected, simply connected covering spaces
p1: X1 — X and ps : Xo — X, then since p1,(m1(X1,21)) = pox(m1(Xo, 22)) = {1} C
m (X, xg), the lifting criterion applied twice gives maps p; : (X1,21) — (X2, z2) and
p2 i (X2,22) — (X1, 1) with ppop; = p; and pyops = pa. Consequently, paopiops =
p10p2 = p2 and similarly, p; opaop; = paopr = p1. So propy: (X2, 22) — (X2, x2),
for example, is a lift of py to the covering map ps. But so is the identity map! By
uniqueness, therefore, p1 o po = Id . Similarly, ps op; = Id. So (X1,z1) and (X3, z3)
are homeomorphic. (More: there is a homeo interpolating between the covering
maps.) So up to homeomorphism, a space has only one connected, simply-connected
covering space. It is known as the universal covering of the space X.

Not every (locall path-connected) space X has a universal covering; a (further) nec-
essary condition is that X be semi-locally simply connected. The idea is that If
p : X — X is the universal cover, then for every point z € X, we have an evenly-
covered neighborhood U of x. The inclusion ¢ : 4 — X, by definition, lifts to
X, 80 i.(m(U,x)) C puo(m(X,z) = {1}, so iy is the trivial map. Consequently,
every loop in {/ is null-homotopic in X. This is semi-local simple connectivity;
every point has a neighborhood whose inclusion-induced homomorphism is triv-
ial. Not all spaces have this property; the most famous is the Hawaiian earrings

X = U{a: c R?: ||z —(1/n,0)|| = 1/n} . The point (0,0) has no such neighborhood.



Building universal coverings: If a space X is path connected, locally path con-
nected, and semi-locally simply connected (S-LLSC), then it has a universal covering.

The idea is that a covering space has the path lifting and homotopy lifting properties,
and the universal cover is the only covering space for which only null-homotopic loops
lift to loops. So we build a space and a map which must have these properties. We
do this by making a space X whose points are (equivalence classes [y| of) based
paths v : (I,0) — (X, zg), where two paths are equivalent if they are homotopic rel
endpoints! The projection map is p([y]) = v(1).

The S-LSCness of X guarantees that this is a covering map; choosing x € X, a path
Yo from xg to x, and a nbhd U of x guaranteed by S-LSC, a path 6 from z( to points in
U is homotopic to v *7g*n where v is a loop at xy and 7 is a path in U. [y = 0*7*x7.]
But by S-LSC, a path in U/ is determined up to homotopy by its endpoints, and so,
with 7 fixed, these paths are in one-to-one correspondence with . So p~1(U) is a
disjoint union, indexed by 71 (X, zq), of sets that are in 1-to-1 corresp with U.

The appropriate topology on X is essentially given as a basis by triples (v, v9,U) as
above. This topology makes p a covering map. Note that the inverse image of the
basepoint z( is the equivalence classes of loops at xq, i.e., m1 (X, zg). A path ~ lifts
to the path of paths ¢, where v:(s) = v(ts), and so the only loops in X which lift

to a loop in X have [y1] = 7] = leao); Lee., [7] = 1 in 71 (X, 20). This implies that
P (M (X, [ea))) = {13, s0 m1 (X, [e0,)) = {1}

However, nobody in their right minds would go about building X in this way!



Why Care? The universal cover gives a unified approach to building all connected
covering spaces of X. The key to this is the deck transformation group (Deckbewe-

gungsgruppe) of a covering space p : X — X this is the set of all homeomorphisms
h : X — X such that po h = p.

By def’n, these h permute each of the pt inverses of p. Since h is a lift of the
projection map p, by the lifting criterion h is det’d by which point in p~1(zg) it
takes the basepoint xy of X to. A deck transformation sending ro to i exists
< pe(m1(X,To) = p«(m(X,21) [we need one inclusion to give h, and the opposite
inclusion to ensure it is a bijection].

These two groups are conjugate, by the projection of a path from zy to x; (follow the
change of basept iso down into G = 71 (X, zg)). Paths in X from z¢ to z; are in 1-to-1

~

corresp with the cosets of H = p. (71 (X, Zg) in p. (71 (X, zg); so deck transformations
are in 1-to-1 corresp with cosets whose representatives conjugate H to itself. The set
of such elements in G is called the normalizer of H in G, and denoted Ng(H) or
simply N(H). The deck transformation group is therefore in 1-to-1 correspondence
with the group N(H)/H under h — the coset with representative the projection of
the path from g to h(xp). And since the lift h is essentially built by lifting paths, it
follows quickly that this map is a homomorphism, hence an isomorphism.



Applying this to the universal covering space p : X — X, in this case H = {1}, so
N(H) = m(X,x9). So the deck transformation group is isomorphic to (X, xg).
For example, this gives the quickest possible proof that 71 (S!) = Z, since R is a con-
tractible covering space, whose deck transformations are the translations by integer
distances.

Thus 71 (X)) acts on its universal cover as a group of homeomorphisms. And since this
action is simply transitive on point inverses [there is exactly one (that’s the simple
part) deck transformation carrying any one point in a point inverse to any other one
(that’s the transitive part)], the quotient map from X to the orbits of this action is
the projection map p. The evenly covered property of p implies that X does have the
quotient topology under this action.

So every space it X the quotient of its universal cover (if it has one!) by its funda-
mental group G = m1(X, xg), acting as the group of deck transformations. And the

quotient map is the covering projection. So X = X /G .

In general, a quotient of a space Z by a group action G need not be a covering
map. The action must be properly discontinuous: for every point z € Z, there is a
neighborhood U of x so that g # 1 = UNgld = (). The evenly covered neighborhoods
provide these for the universal cover. And conversely, the quotient of a space by a
p.d. group action is a covering space.



But! Given G = m (X, z) and its action on a univ cover X, we can, instead of
modding out by G, mod out by any subgroup H of G, to build Xy = X/H. This
is a space with 71 (Xpy) = H, having X as univ covering. And since the quotient

(covering) map pg : X — X = X /G factors through X /H, we have an induced map
PH : . X /H — X, which is a covering map; open sets with trivial inclusion-induced ho-

momorphism lift homeomorphically to X hence homeomorphically to X /H; choosing
lifts to each point inverse of z € X buﬂds the evenly covering nbhds for py . So every
subgroup of G is the fundamental group of a covering of X.

The Galois correspondence: Two coverings p; : X1 — X |, py : Xo — X are
1somorphic if there is a homeo h : X1 — X5 with p; = psoh. Choosing basepts x1, T2
mapping to xg € X, then if h(z1) = x2, then p1.(7m1 (X1, 21)) = pos(hs(m1(X1,21))) =
p2*(7T1(X2, CL‘2>) If instead h(ﬂ?1> = I3, then pl*(ﬂ-l (Xl, 331)) = D2 (7T1 (XQ, LCg)) But
m1 (X2, z2) and w1 (X3, x3) are isomorphic, via a change of basept isomorphism 7 ,
where 1 is a path in X, from x5 to x3. Such a path projects to X as a loop at xg,
and since the change of basept isom is by “conjugating” by the path n, the resulting
groups pos(m1 (X2, x2)) and pas (71 (X2, z3)) are conjugate, by [p2 o 7] .

So choosing any basepts over x(, isomorphic coverings give, under projection, conju-
gate subgroups of w1 (X, zg) . But conversely, given covering spaces X1, Xo whose sub-
groups p1«(7m1 (X1, 1)) and pas (71 (X2, x2)) are conjugate, lifting a loop ~ representing
the conjugating element to a loop 7 in X, starting at xo gives, as its terminal end-
point, a point x3z with p1. (71 (X1, 21)) = p2s (71 (X2, x3)) (since it conjugates back!),
and so, by the lifting criterion, there is an isomorphism h : (X7, 21) — (X2, 23). So
conjugate subgroups give isomorphic coverings. Thus:



The Galois correspondence: For a path-connected, locally path-connected, semi-
locally simply-connected space X, the image of the induced homomorphism on 7
gives a one-to-one correspondence between |isomorphism classes of (connected) cov-
erings of X | and [conjugacy classes of subgroups of 71 (X)].

So, for example, if you have a group G that you are interested in, you know of a (nice
enough) space X with m1(X) = G, and you know enough about the coverings of X,
then you can gain information about the subgroup structure of G.

For example, a free group F(X) is m; of a bouquet of circles X. Any covering space

X of X is a union of vertices and edges, so is a graph. Collapsing a maximal tree to
a point, X is ~ a bouquet of circles, so has free ;. So every subgroup of a free group
is free. A subgroup H of index n in F(X) corresponds to a n-sheeted covering X of

X. If |¥| = m, then X will have n vertices and nm edges. Collapsing a maximal
tree, having n — 1 edges, to a point, leaves a bouquet of nm — n + 1 circles, so
H = F(nm —n + 1). For example, for m = 3, index n subgroups are free on 2n + 1
generators, so every free subgroup on 4 generators has infinite index in F'(3). [Try
proving that directly!]



Given a free group G = F(aq,...ay,) and a collection of words wy,...w,, € G, we
can determine the rank and ndex of the subgroup it H they generate by building the
corresponding cover. The idea is to start with a bouquet of m circles, each subdivided
and labelled to spell out the words w;. Then we repeatedly identify edges sharing
on common vertex if they are labelled precisely the same (same letter and same
orientation). This process is known as folding. One can inductively show that the
(obvious) maps from these graphs to the bouquet of n circles X,, both have image H
under the induced maps on 7q; since the map for the unfolded graph factors through
the one for the folded graph, the image from the folded graph can only get smaller,
but we can still spell out the same words as loops in the folded graph, so the image
can also only have gotten bigger! We continue this folding process until there is no
more folding to be done; the resulting graph X is what is known (in combinatorics)
as a graph covering; the map to X,, is locally injective. If this map is a covering map,
then our subgroup H has finite index (equal to the degree of the covering) and we can
compute the rank of H (and a basis!) from the folded graph. If it is not a covering
map, then the map is not locally surjective at some vertices; if we graft trees onto
these vertices, we can extend the map to an (infinite-sheeted) covering map without
changing the homotopy type of the graph. H therefore has infinite index in G, and
its rank can be computed from H =2 m1(X).



Given words wy, ... ,w, € F(x1,...xy), we can build the covering space correpsond-
ing to the subgroup H = (wy, ... ,w,) by a process of folding, in so doing determining
the index of H and a basis for H as a free group.

The idea is to build a covering X of the bouquet X,,, of m circles, the image of whose
fundamental group is H. Start with a bouquet Y of n circles, each subdivided and
(orientedly) labeled to spell out the words w;. This is a 1-complex; the labeling tells
us how to map Y to X,,. Then inductively, we fold together any two edges at a
vertex with the same oriented edge, since they are supposed to be mapping together
in X,,, and that mapping will not give a local homeo! Note two things: folding is
(almost) a homotopy equivalence, and the original words still always spell out loops
in the intermediate folded spaces.

Stop when you run out of folds. The “obvious” map from the resulting space to X,,
is locally injective, otherwise we have another fold to do. One of two things will occur
at the end; either the map is everywhere a local homeo, and so is a covering map, or
there are points where it is not locally surjective. In the first case, we have succeeded
in building a finite covering X with (since the w; still generate the fundamental
group) fundamental group having image H, and we can read off the index of and a

basis for H from the covering. In the second case, we can extend our space X to a
covering by grafting on (infinite) trees, so H has infinite index; since the grafted space

deformation retracts to X, we can still read off a basis for H by the same process.



