
Homology groups: We start by defining n-chains; these are (finite) formal linear
combinations of the (oriented!) n-simplices of X, where −σ is interpreted as σ with
the opposite (i.e., other) orientation. Adding formal linear combinations formally,
we get the n-th chain group Cn(X) = {∑ nασα : σα an oriented n-simplex in X} .
We next define a boundary operator ∂ : Cn(X) → Cn−1(X), whose image will be the
(n − 1)-chains that are the “boundaries” of n-chains. The idea is that the boundary
of a 2-simplex, for example, should be a “sum” of its three faces (since they do make
up the boundary of the simplex), “accounting for” orientations. Thinking of the
orientation on a 1-simplex [v, w] as an arrow pointing from v to w, we are led to believe
that the boundary of a 2-simplex [u, v, w] should be [u, v] + [v, w] + [w, u]. Similarly,
the boundary of [u, v], on reflection, should be [v] − [u], to distinguish the head of
the arrow (the + side) from the tail (the − side). On the basis of these examples,
trying to find a consistent formula, one might eventually be led to the following
definition: we define the boundary map on the basis elements σα = σ of Cn(X)
as ∂σ =

∑
(−1)iσ|

[v0,... ,v̂i,... ,vn]
, where σ : [v0, . . . , vn] → X is the characteristic

map of σα . ∂σ is therefore an alternating sum of the faces of σ. We then extend
the definition by linearity to all of Cn(X). When a notation indicating dimension is
needed, we write ∂ = ∂n . We define ∂0 = 0.



This definition, it turns out, is cooked up to make the maxim “boundaries have no
boundary” true; that is, ∂n−1 ◦ ∂n = 0, the 0 map. This is because, for any simplex
σ = [v0, . . . vn],

∂ ◦ ∂(σ) = ∂(
n∑

i=0

(−1)iσ|
[v0,... ,v̂i,... ,vn]

)

= (
∑
j<i

(−1)j(−1)iσ|
[v0,... ,v̂j ,... ,v̂i,... ,vn]

) + (
∑
j>i

(−1)j−1(−1)iσ|
[v0,... ,v̂i,... ,v̂j ,... ,vn]

)

The distinction between the two pieces is that in the second part, vj is actually the
(j−1)-st vertex of the face. Switching the roles of i and j in the second sum, we find
that the two are negatives of one another, so they sum to 0, as desired.

And this calculation is all that it takes to define homology groups. What it tells us
is that im(∂n+1) ⊆ ker(∂n) for every n. ker(∂n = Zn(X) is called the n-cycles of
X; they are the n-chains with 0 (i.e., empty) boundary. They form a (free) abelian
subgroup of Cn(X). im(∂n+1 = Bn(X) is the n-boundaries of X; they are, of course,
the boundaries of (n + 1)-chains in X. The n-th homology group of X, Hn(X) is the
quotient Zn(X)/Bn(X) ; it is an abelian group.



A key observation is that the boundary maps ∂n are linear, that is, they are homo-
morphisms between the free abelian groups ∂n : Cn(X) → Cn−1(X). Consequently,
they can be expressed as (integer-valued) matrices Δn. Row reducing Δn (over the
integers!) allows us to find a basis v1, . . . , vk for Zn(X) (clearing denomenators to
get vectors over Z). Then since ΔnΔn+1 = 0, the columns of Δn+1 are in the kernel
of Δn, so can be expressed as linear combinations of the vi . These combinations can
be determined by row reducing the augmented matrix (v1 · · · vk|Δn+1) . This will

row reduce to
(

I | C
0 | 0

)
, and C basically describes the boundaries Bn(X) in terms

of the basis v1, . . . , vk . The homology group Hn(X) is then the cokernel of C, i.e.,
Z

k/imC . Note that C will have integer entries, since we know that the columns of
Δn+1 can be expressed as integer linear combinations of the vi, and, being a basis,
there is only one such expression.



Some examples: the Klein bottle K has a Δ-complex structure with 2 2-simplices, 3
1-simplices, and 1 0-simplex; we will call them f1 = [0, 1, 2], f2 = [1, 2, 3], e1 = [0, 2] =
[1, 3], e2 = [1, 0] = [2, 3], e3 = [1, 2], and v1 = [0] = [1] = [2] = [3]. Computing, we
find ∂2f1 = ∂[0, 1, 2] = [1, 2] − [0, 2] + [0, 1] = e3 − e1 − e2 , ∂2f2 = e2 − e1 + e3 ,
∂1e1 = ∂1e2 = ∂1e3 = 0 and ∂i = 0 for all other i (as well). So we have the chain
complex
· · · → 0 → Z

2 → Z
3 → Z → 0

and all of the boundary maps are 0, except for ∂2, which has the matrix

⎛
⎝−1 −1

−1 1
1 1

⎞
⎠

. This matrix is injective, so ker ∂2 = 0, so H2(K) = 0, on the other hand, H1(K)
= coker(∂2), and applying column operations we can transform the matrix for ∂2 to⎛
⎝ 1 0

1 2
−1 0

⎞
⎠, which implies that the cokernel is Z⊕Z2, since

⎛
⎝ 1

1
−1

⎞
⎠ ,

⎛
⎝ 0

1
0

⎞
⎠ ,

⎛
⎝ 0

0
1

⎞
⎠ is

a basis for Z
3. Finally, H0(K) = Z, since ∂1, ∂0 = 0, and all higher homology groups

are also 0, for the same reason.

As another example, the topologist’s dunce hat has a Δ-structure with 1 2-simplex,
1 1-simplex, and 1 0-simplex. The boundary maps, we can work out (starting from
C2(X) ), are (1), (0), and (0), so H2(X) = H1(X) = 0, and H0(X) = Z. all higher
groups are also 0.


