
The simplicial homology groups are, in the end, fairly routine to calculate from a
Δ-complex structure. But! The calculations depend on the Δ structure! This is not
a group defined from the space X; it depends on the space and a Δ structure on it.
Choosing a different structure on X, maybe we would get different groups! We should
denote our groups by HΔ

i (X), to acknowledge this dependence on the structure.

But we don’t want a group that depends on this structure. We want groups that
just depend on the topological space X, i.e., which are topological invariants. These
groups HΔ

i (X) are topological invariants, but we will need to take a very roundabout
route to show this. We now define another sequence Hi(X) of groups, the singular
homology groups, which are readily seen to be topological invariants; but this defini-
tion will also make it very unclear how to really compute them! Then we will show
that for Δ-complexes these two sequences of groups are really the same. In so doing,
we will have built a sequence of topological invariants that for a large class of spaces
are fairly routine to compute. Then all we will need to show is that they also capture
useful information about a space (i.e., we can prove useful theorems with them!).

And the basic idea behind defining them is that, with simplicial homology, we have
already done all of the hard work. What we do is, as before, build a sequence of (free)
abelian groups, the chain groups Cn(X), and (linear) boundary maps between them,
with consecutive maps composing to 0. Then, as before, the homology groups are
kernels mod images, i.e., cycles mod boundaries. And, as before, the basis elements
for each of our chain groups Cn(X) will be the n-simplices in X. But now X is any
topological space. So how do we get n-simplices in such a space? We do the only
thing we can; we map them in.



We work with singular n-chains, that is, formal (finite) linear combinations
∑

aiσi,
where ai ∈ Z and the σi are singular simplices, that is, maps σi : Δn → X. The
boundary maps are exactly as before; the alternating sum of the restrictions of σi to
the n+1 faces of Δn. The same proof as before (interpreting the faces as restrictions of
the map σi, instead of as physical faces) shows that the composition of two successive
boundaries is 0, and so all of the machinery is in place to define the singular homology
groups Hi(X) as the kernel of ∂i modulo the image of ∂i+1 = Zi(X)/Bi(X) . They
are, by definition, groups defined using the topological space X as input, and so are
topological invariants. Elements are equivalence classes of i-cycles, where z1 � z2 if
z1 − z2 = ∂w for some (i + 1)-chain w . We say that z1 and z2 are homologous.

Singular homology groups are quick to define, but what do they measure? We are
trying to mimic simplicial homology, but because a general topological space X cannot
be built out of simplices, we do the next best thing; we study X by mapping simplices
in. This is true of simplicial homology, too, except that we restrict ourselves to a
very few special singular simplices (the characteristic maps of the simplices for X).
In the end an n-cycle

∑
aiσ

n
i , since the faces of the σi must match up precisely,

in order to cancel, can be thought of as a map of an n-complex into X, made by
gluing the n-simplices σi together before mapping in. The integer coefficients can
really be interpreted as taking multiple copies of Δn and gluing them together along
their boundaries (the signs tell us the underlying orientations). The idea is that this
n-complex is being mapped “around a hole”, unless it extends to a map of an (n+1)-
complex into X (having our n-complex as boundary). So singular homology really is
trying to detect holes, it is just doing it with maps.....



The “fun” with singular homology groups comes when you try to compute them!
Cn(X) = {∑ aiσi : ai ∈ Z and σi : Δn → X is continuous} is typically a huge group,
since there will be immense numbers of maps Δn → X . The only space for which this
is not true is the one-point space ∗; then there is, for each n, exactly one (distinct)
map σn : Δn → ∗ ; the constant map. Therefore each face of Δn gives the same
restriction map σn−1, and so the boundary maps can be directly computed (they
depend on the parity of the number n + 1 of faces an n-simplex has). We find that
∂2n = Id and ∂2n−1 = 0 . So in computing homology groups, we either have kernel
everything (∂i = 0) and image everything (∂i+1 = Id) or kernel nothing (∂i = Id)
and image nothing (∂i+1 = 0), so in both cases Hi(∗) = 0 . Except for i = 0; then
∂0 = 0 (by definition) and ∂1 = 0, so H0(∗) = Z . But other than this example (and,
well, OK, spaces with the discrete topology; it’s the same calculation as above for
every point!), computing singular homology from the definition is quite a chore! So
we need to build some labor-saving devices, namely, some theorems to help us break
the problem of computing these groups into smaller, more manageable pieces.

First set of manageable pieces: if we decompose X into its path components, X =⋃
Xα, then Hi(X) ∼= ⊕

Hi(Xα) for every i. This is because every singular simplex,
since Δi is path-connected, maps into some Xα . So Ci(X) ∼= ⊕

Ci(Xα). Since the
boundary of a simplex mapping into Xα consists of simplices in Xα, the boundary
maps respect the decompositions of the chain groups, so Bi(X) ∼= ⊕

Bi(Xα) and
Zi(X) ∼= ⊕

Zi(Xα), and so the quotients are Hi(X) ∼= ⊕
Hi(Xα) .



So, if we wish to, we can focus on computing homology groups for path-connected
spaces X. For such a space, H0(X) ∼= Z, generated by any map of a 0-simplex (= a
point) into X. This is because any pair of 0-simplices are homologous; given any two
points x, y ∈ X, there is a path γ : I → X from x to y, This path can be interpreted
as a singular 1-simplex, and ∂γ = y−x . So H0(X) is generated by a single point [x] .
No multiple of this point is null-homologous, because for any 1-chain

∑
niσi, the sum

of the coefficients of its boundary is 0 (since this is true for each singular 1-simplex),
and any 0-chain

∑
ni[xi] is homologous to (

∑
ni)[x] by the above argument.

Techincal aside: the fact that H0(∗) = Z is annoying to some, and often requires
treating 0-dimensional homology as a special case. But since the boundary of a
singular 1-simplex is always of the form v−w, we find that the image of ∂1 is always
contained in the subgroup of C0(X) consisting of chains whose coefficients sum to
0. This means that we can, for free, augment the singular chain complex by a map
· · · → C1(X)∂1

→C0)X) α
→Z → 0 where α is the map α(

∑
aiσ

0
i ) =

∑
ai . This is still

a chain complex (compositions of consecutive maps are 0); the resulting homology
groups are called reduced homology H̃i(X) . All that this does is remove one copy
of Z from H0; H̃0(X) ⊕ Z ∼= H0(X) . All other homology groups are unchanged.
There is a reduced relative homology as well, since we can augment with the same
map (1-simplices always have 2 ends!), but in this case it has (essentially) no effect;
H̃i(X, A) ∼= Hi(X, A) for all i unless A = ∅, in which case we lose the Z in dimension
0 that we expect to.



Continuous maps: Perhaps the most important property of the fundamental group
is that a continuouos map between spaces induces a homomorphism between groups.
(This implied, for instance, that homeomorphic spaces have isomorphic π1). The same
is true for homology groups, for essentially the same reason. Given a map f : X → Y ,
there is an induced map f# : Cn(X) → Cn(Y ) defined by postcomposition; for a
singular simplex σ, f#(σ) = f ◦ σ, and we extend the map linearly. Since f ◦ (g|A) =
(f ◦ g)|A (postcomposition commutes with restriction of the domain), f# commutes
with ∂ : f#(∂σ) = ∂(f#(σ)). A homomorphism between chain complexes (i.e., a
sequence of such maps, one for each chain group) which commutes with the boundaries
maps in this way, is called a chain map. A chain map, such as f#, therefore, takes
cycles to cycles, and boundaries to boundaries, and so f# : Zi(X) → Zi(Y ) (which
is linear, hence a homomorphism) induces a homomorphism f∗ : Hi(X) → Hi(Y )
by f∗[z] = [f#(z)] . Since it is defined by composition with singular simplices, it is
immediate that, for a map g : Y → Z, (g ◦ f)∗ = g∗ ◦ f∗ . And since the identity
map I : X → X satisfies I# = Id, so I∗ = Id, homeomorphic spaces have isomorphic
homology groups.



Homotopic maps: Another important property of π1 is that homotopic maps give
the same induced map (after correcting for basepoints). This is also true for homology;
if f � g : X → Y , then f∗ = g∗ . The proof, however, is not as straightforward as
for π1. It requires some new technology; the chain homotopy. A chain homotopy H
between the chain maps f#, g# : C∗(X) → C∗(Y ) is a sequence of homomorphisms
Hi : Ci(X) → Ci+1(Y ) satisfying Hi−1∂i + ∂i+1Hi = f# − g# : Ci(X) → Ci(Y ) .
The existence of H implies that f∗ = g∗; for an i-cycle z (with ∂i(z) = 0) we have
f∗[z] − g∗[z] = [f#(z) − g#(z)] = [Hi−1∂i(z) + ∂i+1Hi(z)] = [Hi−1(0) + ∂i+1(w)]
= [∂i+1(w)] = 0.
And the existence of a homotopy between f and g implies the existence of a chain
homotopy between f# and g# . This is because the homotopy gives a map H :
X ×I → Y , which induces a map H# : Ci+1(X×I) → Ci+1(Y ) . Then we pull, from
our back pocket, a prism map P : Ci(X) → Ci+1(X × I); the composition H# ◦ P
will be our chain homotopy. The prism map takes a (singular) i-simplex σ and sends
it to a sum of singular (i + 1)-simplices in X × I. And the way we define it is to take
the i-simplex Δi, and cut Δi × I (i.e., a prism) into a sum of (i + 1)-simplices. Using
the map σ′ = σ × Id : Δi × I → X × I, restricted to each of these (i + 1)-simplices,
yields the prism map. There are many ways of decomposing a prism into simplices,
but we need to be careful to choose one which restricts well to each of the faces of Δi,
in order to get the chain homotopy property we require. What this requires is that
the decomposition, when restricted to any face of Δi (which we think of as a copy of
Δi−1), is the same as the decomposition we would have applied to a prism over an
(i − 1)-simplex. After some exploration, we are led to the following formulation:



If we write Δn × {0} = [v0, . . . , vn] and Δn × {1} = [w0, . . . , wn], then we can
decompose Δn × I as the (n+1)-simplices [v0, . . . , vi, wi, . . . , wn]. We then define
P (σ) =

∑
(−1)iσ′|[v0,... ,vi,wi,... ,wn]. A “routine calculation” verifies that

(∂P + P∂)(σ) = σ′|[w0,... ,wn] − σ′|[v0,...vn]

Composing with H# yields our result.

Consequently, for example, homotopy equivalent spaces have isomporphic (reduced)
homology groups; homotopy equivalences induce isomorphisms. So all contractible
spaces have trivial reduced homology in all dimensions, since they are all homotopy
to a point. If we think of a cell complex as a collection of disks glued together, this
lends some hope that we can compute their homology groups, since we can compute
the homology of the building blocks. Our next goal is to make turn this idea into
action; but we need another tool, to frame our answer in the best way possible.


