
Exact sequences: Most of the fundamental properties of homology groups are
described in terms of exact sequences. A sequence of homomorphisms

· · · fn+1
→ An

fn

→An−1
fn−1
→ an−2 → · · ·

of abelian groups is called exact if im(fn) = ker(fn−1) for every n. In most cases, we
get the most mileage out of an exact sequence when some of the groups are trivial;

0 → A f
→B is exact ⇔ f is injective, and A f

→B → 0 is exact ⇔ f is surjective.

An exact sequence 0 → A→B → C → 0 is called a short exact sequence.

The main tool we will use turns a family of short exact sequences of chain maps
between three chain complexes into a single long exact homology sequence. Given
chain complexes A = (An, ∂) , B = (Bn, ∂′) , and C = (Cn, ∂′′) and short exact
sequences of chain maps (i.e., ∂′in = in∂ , ∂′′jn = jn∂′)
0 → An

in

→Bn
jn

→Cn → 0 there is a general result which provides us with a long
exact sequence

· · · ∂
→Hn(A) i∗

→Hn(B) j∗
→Hn(C) ∂

→Hn−1(A) i∗
→ · · ·

Most of the work is in defining the “boundary” map ∂. Given an element [z] ∈ Hn(C),
a representative z ∈ Cn satisfies ∂′′(z) = 0. But jn is onto, so there is a b ∈ Bn with
jn(b) = z, Then in−1∂

′(b) = ∂′′jn(b) = 0, so ∂′(b) ∈ ker(jn−1 =im(an−1). So there is
an a ∈ An−1 with in−1(a) = ∂′(b) . But then in−2∂(a) = ∂′in−1(a) = ∂′∂′(b) = 0, so,
since in−2 is injective, ∂a = 0, so a ∈ Zn−1(A), and so represents a homology class
[a] ∈ Hn(A). We define ∂([z]) = [a] .
To show that this is well-defined, we need to show that the class [a] we end up with is
independent of the choices made along the way. The choice of a was not really a choice;



in−1 is, by assumption, injective. For b, if jn(b) = z = jn(b′), then jn(b − b′) = 0,
so b − b′ = in(w) for some w ∈ An. Then ∂′b′ = ∂′b − ∂′in(w) = ∂′b − in−1∂(w),
so choosing a′ = a − ∂(w) we have in−1(a′) = ∂′(b′). But then [a′] = [a − ∂w] =
[a]−[delw] = [a]. Finally, there is actually a choice of z ; if [z] = [z′], then z′ = z+∂′′w
for some w ∈ Cn+1; but then choosing b′, w′ with jn(b′) = z′ , jn+1(w′) = w , we
have
∂′′w = ∂′′jn+1(w′) = jn∂′(w′) , so
z′ = z + ∂′′w = jn(b + ∂′w′), so we may choose b′ = b + ∂′w′ (since the result is
independent of this choice!), then since ∂′b′ = ∂′b everything continues the same.

Now to exactness! We need to show three (types of) equalities, which means six
containments. Three (image contained in kernel) are shown basically by showing that
compositions of two consecutive homomorphisms are trivial. jnin = 0 immediately
implies j∗i∗ = 0 . From the definition of ∂, i∗∂[z] = [in(a)] = [∂′(b)] = 0, and
∂j∗[z] = ∂[jn(z)] = [a], where in−1(a) = ∂′(z) = 0, so a = 0 (since in−1 is injective),
so [a] = 0.

For the opposite containments, if j∗[z] = [jn(z)] = 0, then jn(z) = ∂′′w for some w.
Since jn+1 is onto, w = jn+1(b) for some b. Then jn(z − ∂′b) = ∂′′w − ∂′′jn+1b = 0,
so z = ∂′b = in(a) for some a, so i∗[a] = [z − ∂′b] = [z] . So ker j∗ ⊆imi∗ .
If i∗[z] = 0, then in(z) = ∂′w for some w ∈ Bn+1. Setting c = jn+1(w), then
∂′′c = jn∂′w− inin(Z) = 0, so [c] ∈ hn+1(C), and computing ∂[c] we find that we can
choose w for the first step and z for the second step, so ∂[c] = [z] . So ker jn ⊆im∂
. Finally, if ∂[z] = 0, then z = jn(b) for some b, and ∂′b = in−1(a) with [a] = 0,
i.e., a = ∂w for some w. So ∂′b = in−1∂w = ∂′inw But then ∂′(b − inw) = 0, and



jn(b − inw) = z − 0 = z, so z ∈im(jn), so [z] ∈im(j∗) . So ker ∂ ⊆im(jn) . Which
finishes the proof!

Now all we need are some new chain complexes!


