
Now all we need are some new chain complexes!

Relative homology: Start with a pair (X, A) , i.e., of a space X and a subspace
A ⊆ X . As abelian groups we can think of Cn(A) as a subgroup of Cn(X) (under
the injective homom induced by the inclusion i : A → X), and we can set Cn(X, A) =
Cn(X)/Cn(A) . The boundary map ∂n : Cn(X) → Cn−1(X) satisfies ∂n(Cn(A) ⊆
Cn−1(A) (the boundary of a map into A maps into A), so we get an induced boundary
map ∂n : Cn(X, A) → Cn−1(X, A) . The (Cn(X, A), ∂n) are a chain complex; its
homology groups are the singular relative homology groups of the pair (X, A), denoted
Hn(X, A). A cycle is [z] with ∂z ∈ Cn−1(A), i.e., a chain with boundary in A. A
boundary satisfies z = ∂w+a for some w ∈ Cn+1(X) and a ∈ Cn(A) , i.e., it cobounds
a chain in A (∂w = z − a). Note that the relative homology of the pair (X, ∅) is just
the ordinary homology of X; we quotient out by nothing.

There is a reduced relative homology as well, since we can augment with the same
map (1-simplices always have 2 ends!), but in this case it has (essentially) no effect;
˜Hi(X, A) ∼= Hi(X, A) for all i unless A = ∅, in which case we lose the Z in dimension
0 that we expect to.

The inclusion in and projection pn maps give us short exact sequences

0 → Cn(A) → Cn(X) → Cn(X, A) → 0
and since the boundary on chains in X restricts to the boundary on A and induces
the boundary on (X, A), in and pn are chain maps. So we get a long exact homology
sequence

· · · → Hn(A) → Hn(X) → Hn(X, A) → Hn−1(A) → Hn−1(X) → · · ·



There is also a long exact sequence of a triple (X, A, B) , where by triple we mean
B ⊆ A ⊆ X . From the short exact sequences

0 → Cn(A, B) → Cn(X, B) → Cn(X, A) → 0 , i.e.,
0 → Cn(A)/Cn(B) → Cn(X)/Cn(B) → Cn(X)/Cn(A) → 0

we get the long exact sequence
· · · → Hn(A, B) → Hn(X, B) → Hn(X, A) → Hn−1(A, B) → Hn−1(X, B) → · · ·

A map of pairs f : (X, A) → (Y, B) induces (by postcomposition) a homom of relative
homology f∗ : Hi(X, A) → Hi(Y, B) , just as with absolute homology. We also get
a homotopy-invariance result: if f, g : (X, A) → (Y, B) are maps of pairs which are
homotopic as maps of pairs, i.e., there is a map (X × I, A × I) → (Y, B) which is
f on one end and g on the other, then f∗ = g∗ . The proof is identical to the one
given before; the prism map P sends chains in A to chains in A, so induces a map
Ci(X × I, A × I) → Ci+1(X, A) which does precisely what we want.



There is one other main piece of homological algebra that we will find useful ; the
Five Lemma. Now that we have a way of building long exact sequences, we will
soon have ways of building maps between them. So the next result becomes useful.

If we have abelian groups and homoms, giving two exact sequences

An
fn→ Bn

gn→ Cn
hn→ Dn

in→ En

α ↓ β ↓ γ ↓ δ ↓ ε ↓
An−1

fn−1→ Bn−1
gn−1→ Cn−1

hn−1→ Dn−1
in−1→ En−1

and the homoms α, β, δ, ε are all isomorphisms, then γ is an isomorphism.

The proof is literally a matter of doing the only thing you can. To show injectivity,
suppose x ∈ Cn and γx = 0, then hn−1γx = δhnx = 0, so, since δ is injective, hnx =
0. So by the exactness at Cn, x = gny for some y ∈ Bn. Then gn−1βy = γgny = γx =
0, so by exactness at Bn−1, βy = fn−1z for some z ∈ An−1. Then since α is surjective,
fn−1z = αw for some w. Then 0 = gnfnw . But βfnw = fn−1αw fn−1z = βy, so
since β is injective, y = fnw . So 0 = gnfnw = gny = x. So x = 0.
For surjectivity, suppose x ∈ Cn−1. Then hn−1x ∈ Dn−1, so since δ is surjective,
hn−1x = δy for some y ∈ Dn. Then εiny = in−1δy = in−1hn−1x = 0, so since
ε is injective, iny = 0. So by exactness at Dn, y = hnz for some z ∈ Cn. Then
hn−1γz = δhnz = δy = hn−1x, so hn−1(γz − x) = 0, so by exactness at Cn−1,
γz − x = gn−1w for some w ∈ Bn−1. Then since β is surjective, w = βu for some
u ∈ Bn. Then γgnu = gn−1βu = gn−1w = γz − x, so x = γz − γgnu = γ(z − gnu) .
So γ is onto.


