
In the end, the big result that allows us to get our homology machine really running
is what is known as excision. In a sense, it is the analogue of Seifert - van Kampen.
We start with X = A ∪ B, and we want to express the homology of X in terms of
that of A, B, and A∩B. With long exact homology sequences in mind, we try to first
build a short exact sequence out of the chain complexes C∗(A ∩ B), C∗(A), C∗(B),
and C∗(X). Taking our cue from the proof of S-vK, we might think of chains in X
as sums of chains in A and B, except that we mod out by chains in A ∩ B. So we
might try the sequence

0 → Cn(A ∩ B) → Cn(A) ⊕ Cn(B) → Cn(X) → 0
where jn : Cn(A) ⊕ Cn(B) → Cn(X) is defined as jn(a, b) = a + b . In order to
get exactness at the middle term (i.e., image = the kernel of this map, which is
{(x,−x) : x ∈ Cn(A) ∩ Cn(B)}), we set in : Cn(A ∩ B) → Cn(A) ⊕ Cn(B) to be
in(x) = (x,−x) , since Cn(A ∩ B) = Cn(A) ∩ Cn(B) ! in is then injective, and we
certainly have that this sequence is exact at the middle term. But, in general, jn is
far from surjective! The image of jn is the set of n-chains that can be expressed as
sums of chains in A and B. Which of course not every chain in X can be; singular
simplices in X need not map entirely into either A or B.

We can solve this by replacing Cn(X) with the image of jn, calling it, say, C
{A,B}
n (X).

[Note: these groups would form a chain complex!] Then we have a short exact se-
quence, and hence a long exact homology sequence. But it involves a “new” homology
group H

{A,B}
n (X) . The point is that, like S-vK, under the right conditions, this new

homology is the same as Hn(X) !



Starting from scratch, the idea is that, starting with an open cover {Uα} of X (or,
more generally, with a collections of subspaces Aα whose interiors Uα cover X), we
build the chain groups subordinate to the cover,

CU
n (X) = {∑ aiσ

n
i : σi : n : Δn → X, σn

i (Δn) ⊆ Uα for some α} ⊆ Cn(X).
Since the face of any simplex mapping into Uα also maps into Uα, our ordinary
boundary maps induce boundary maps on these groups, turning (CU

n (X), ∂n) into a
chain complex. Our main result is that the inclusion i of these groups into Cn(X)
induces an isomophism on homology. And to show this, we (could) once again use
the notion of a chain homotopy.
Theorem: There is a chain map b : Cn(X) → CU

n (X) so that i ◦ b and b ◦ i are both
chain homotopic to the identity. i consequently induces isomorphisms on homology.
But we won’t prove it quite that way! Another approach is to use the short exact
sequence of chain complexes

0 → CU
n (X) i→Cn(X) → Cn(X)/CU

n (X) → 0
to build a long exact homology sequence. Every third group is Hn(C∗(X)/CU

∗ (X)) ;
if we show that these groups are 0, then i∗ will be an isomorphism. And to show
this, working back through the definition of homology classes in Hn(C∗(X)/CU

∗ (X)),
we need to show that if z ∈ Cn(X) with ∂z ∈ CU

n−1(X) (i.e., z is a relative cycle),
then there is a w ∈ Cn+1(X) with z − ∂w ∈ CU

n (X) (i.e., z is a relative boundary).
In words, if z has boundary a sum of small simplices, then there is a chain z′ made
of small simplices so that z − z′ is a boundary.



And the key to building z′ and w is a process known as barycentric subdivision. The
idea is really the same as for S-vK; we cut our singular simplices up into tiny enough
pieces so that (via the Lebesgue number theorem) each piece maps into some Uα .
Unlike S-vK, though, we want to do this in a more structured way, so that the cutting
up process is “compatible” with our boundary maps. And the best way to describe
this cutting up is through barycentric coordinates. Recall that an n-simplex is the set
of convex linar combinations

∑
xivi with xi ≥ 0 and

∑
xi = 1 . The map which sends

an n-simplex to the n-simplex Δn is literally the map
∑

xivi 
→ (x0, . . . , xn) . These
are the barycentric coordinates of an n-simplex. Since, formally, all singular simplices
are considered to have Δn for their domain, we can describe barycentric subdivision
by describing how to cut up Δn. The idea is to build a process that is compatible
with the boundary map, so that the subdivision, when restricted to a sub-simplex,
is the subdivision of that sub-simplex. A 1-simplex [v0, v1] is subdivided by adding
the barycenter w = (v + 0 + v1)/2 as a vertex, cutting [v0, v1] into two 1-simplices
,[v0, w],[w, v1] . A 2-simplex [v0, v1, v2] will, to be compatible with the boundary map,
have its boundary cut into 6 1-simplices; using the barycenter (v0 +v1 +v2)/3 we can
cone off each of these 1-simplices to subdivide [v0, v1, v2] into 6 2-simplices. Taking
the cue that 2 = (1 + 1)! , 6 = (2 + 1)! is probably no accident, we might expect that
an n-simplex will be cut into (n + 1)! n-simplices. Note that this is the number of
ways of ordering the vertices of our simplex. And following the “pattern” of our two
test cases, where each new simplex was the convex span of vertices chosen as (vertex)
, (barycenter of a 1-simplex having (vertex) as a vertex), (barycenter of a 2-simplex
containing the previous 2 vertices), etc., we are led to the idea that the barycentric
subdivision of an n-simplex [v0, . . . , vn] is the (n + 1)! n-simplices,



[vα(0), (vα(0) + vα(1))/2, (vα(0) + vα(1) + vα(2))/3, . . . , (vα(0) + · · · vα(n))/(n + 1)]
one for every permutation α of {0, . . . , n} . And since we want to take into account
orientations as well, the natural thing to do is to define the barycentric subdivision
of a singular n-simplex σ : [v0, . . . , vn] → X to be
S(σ) =

∑

α

(−1)sgn(α)σ|[vα(0),(vα(0)+vα(1))/2,(vα(0)+vα(1)+vα(2))/3,... ,(vα(0)+···vα(n))/(n+1)]

where the sum is taken over all permutations of {0, . . . , n} . This (extending linearly
over the chain group) is the subdivision operator, S : Cn(X) → Cn(X) . A “routine”
calculation establishes that ∂S = S∂ , i.e., it is a chain map (i.e., it behaves well
on the boundary of our simplices). The point to this operator is that all of the
subsimplices in the sum are a definite factor smaller than the original simplex. In
fact, if the diameter of [v0, . . . , vn] is d (the largest distance between points, which
will, because it is the convex span of the vertices, be the largest distance between
vertices), then every individual simplex in S(σ) will have diameter at most nd/(n+1)
(the result of a little Euclidean geometry and induction). So by repeatedly applying
the subdivision operator S to a singular simplex, we will obtain a singular chain Sk(σ),
which is “really” σ written as a sum of tiny simplices, whose singular simplices have
image as small as we want. Or put more succinctly, if {Uα} is an open cover of X
and σ : Δn → X is a singular n-simplex, then choosing a Lebesgue number ε for
the open cover σ−1(Uα) of the compact metric space Δn, and choosing a k with
d(n/(n + 1))k < ε, we find that Sk(σ) is a sum of singular simplices each of which
maps into one of the Uα, i.e., Sk(σ) ∈ CU

n (X).



In the end, we will choose our needed “small” cycle to be z′ = Skz. and to show
that their difference is a boundary, we will build a chain homotopy between Id and
Sk. And to do that, we define a map R : Cn(X) → Cn+1(X × I); when followed
by the projection-induced map p# : Cn+1(X × I) → Cn+1(X), we get a map T :
Cn(X) → Cn+1(X), and show that ∂T + T∂ = I − S . Then we set H =

∑
TSj ,

where the sum is taken over j = 0, . . . k − 1. Once we define T (!) , we will have
∂Hk + Hk∂ =

∑
∂TSj + TSj∂ =

∑
(∂T + T∂)Sj =

∑
(Sj − Sj+1) = I − Sk (since

the last sum telescopes). And defining R, is, formally, just another particular sum.
Setting up some notation, thinking of Δn×I , as before, as having vertices {v0, . . . vn}
on the 0-end and {w0, . . . , wn} on the 1-end, N = {0, . . . , n}, Π(Q) = the group of
permutations of Q, and σ′ = σ × I : Δn × I → X × I), we have

R(σ) =
∑

A⊆N

∑

π∈Π(N\A)

{
(−1)|A|(−1)sgn(π)

∏

j∈N\A

(−1)j
}

σ′|[vi0 ,... ,vij
,(wi0+···wij

)/(j+1),(wi0+···wij
+wπ(ij+1 )/(j+2),... ,(wi0+···wij

+wπ(ij+1)+···wπ(in))/(n+1)

where we sum over all non-empty subsets of {0, . . . n} (with the induced ordering on
vertices from the ordering on {0, . . . , n}). Intuitively, this map “interpolates” between
the simplex [v0, . . . vn] and the barycentric subdivision on w0, . . . , wn, by taking the
(signed sums of the) convex spans of simplices on the bottom (0) and simplices on
the top (1). Again, a “routine” calculation will establish that ∂T + T∂ = I − S , as
desired. [At any rate, I verified it for n=1,2; the formula for the sign of each simplex
was determined by working backwards from these examples.]


