
Homology on “small” chains = singular homology: The point to all of these
calculations was that if {Uα} is an open cover of X, then the inclusions in : CU

n (X) →
Cn(X) induce isomorphisms on homology. This gives us two big theorems. First:
Mayer-Vietoris Sequence: If X = U ∪ V is the union of two open sets, then the
short exact sequences 0 → Cn(U ∩ V) → Cn(U) ⊕ Cn(V) → C

{U,V}
n (X) → 0 ,

together with the isomorphism above, give the long exact sequence

· · · → Hn(U ∩ V)
(iU∗,−iV∗)→ Hn(U) ⊕ Hn(V)

jU∗+jV∗→ Hn(X) ∂→Hn−1(U ∩ V) → · · ·
As with Seifert - van Kampen, we can replace open sets by sets A, B having nbhds U ,V
which def. retract to them, so that U ∩ V def. retracts to A∩B. E.g., subcomplexes
A, B ⊆ X of a CW-complex, with A ∪ B = X have homology satisfying a l.e.s.

· · · → Hn(A ∩ B)
(iA∗,−iB∗)→ Hn(A) ⊕ Hn(B)

jA∗+jB∗→ Hn(X) ∂→Hn−1(A ∩ B) → · · ·
For reduced homology, we augment the chain complexes used above with the s.e.s.
0 → Z → Z ⊕ Z → Z → 0 , where the maps are a �→ (a,−a) and (a, b) �→ a + b .

E.g., an n-sphere Sn is the union Sn
+∪Sn

− of its upper and lower hemispheres, each of
which is contractible, and have intersection Sn

+ ∩ Sn
− = Sn−1

0 the equatorial (n − 1)-
sphere. So Mayer-Vietoris gives us the exact sequence

· · · → H̃k(Sn
+) ⊕ H̃k(Sn

−) → H̃k(Sn) → H̃k−1(Sn−1
0 ) → H̃k−1(Sn

+) ⊕ H̃k−1(Sn
−) →

· · · , i.e,
0 → H̃k(Sn) → H̃k−1(Sn−1

0 ) → 0 i.e., H̃k(Sn) ∼= H̃k−1(Sn−1) for every k and n.
So by induction,

H̃k(Sn) ∼= H̃k−n(S0) ∼=
{

Z, if k=n
0, otherwise



The second result that this machinery gives us is what is properly known as excision:

If B ⊆ A ⊆ X and clX(B) ⊆ intX(A), then for every k the inclusion-induced map
Hk(X \ B, A \ B) → Hk(X, A) is an isomorphism.

An equivalent formulation of this is that if A, B ⊆ X and intX(A)∪ intX(B) = X,
then the inclusion-induced map Hk(B, A∩B) → Hk(X, A) is an isomorphism. [From
first to second statement, set B′ = X \ B .]

To prove the second statement, we know that the inclusions C
{A,B}
n (X) → Cn(X)

induce isomorphisms on homology, as does Cn(A) → Cn(A), so, by the five lemma,
the induced map

C
{A,B}
n (X)/Cn(A) → Cn(X)/Cn(A) = Cn(X, A)

induces isomorphisms on homology. But the inclusion
Cn(B) → C

{A,B}
n (X)

induces a map
Cn(B, A ∩ B) = Cn(B)/Cn(A ∩ B) → C

{A,B}
n (X)/Cn(A)

which is an isomorphism of chain groups; a basis for C
{A,B}
n (X)/Cn(A) consists of

singular simplices which map into A or B, but don’t map into A, i.e., of simplices
mapping into B but not A, i.e., of simplices mapping into B but not A∩B. But this
is the same as the basis for Cn(B, A ∩ B) !



With these tools, we can start making some real homology computations. First,
we show that if ∅ 
= A ⊆ X is “nice enough”, then Hn(X, A) ∼= H̃n(X/A) . The
definition of nice enough, like Seifert - van Kampen, is that A is closed and has an
open neighborhood U that deformation retracts to A (think: A is the subcomplex of
a CW-complex X). Then using U , X \ A as a cover of X, and U/A, (X \ A)/A as a
cover of X/A, we have

H̃n(X/A)
(1)∼=Hn(X/A, A/A)

(2)∼=Hn(X/A,U/A)
(3)∼=Hn(X/A \A/A,U/A \A/A)

(4)∼=Hn(X \
A,U \ A)

(5)∼=Hn(X, A)
Where (1),(2) follow from the LES for a pair, (3),(5) by excision, and (4) because the
restriction of the quotient map X → X/A gives a homeomorphism of pairs.

Second, if X, Y are T1, x ∈ X and y ∈ Y each have neighborhoods U ,V which defor-
mation retract to each point, then the one-point union Z = X∨Y = (X

∐
Y )/(x = y)

has H̃n(Z) ∼= H̃n(X)⊕ H̃n(Y ); this follows from a similar sequence of isomorphisms.
Setting z = the image of {x, y} in Z, we have

H̃n(Z) ∼= Hn(Z, z) ∼= Hn(Z,U ∨ V) ∼= Hn(Z \ z,U ∨ V \ z) ∼= Hn([X \ x]
∐

[Y \
y], [U \ x]

∐
[V \ y]) ∼= Hn(X \ x,U \ x) ⊕ Hn(Y \ y,V \ y) ∼= Hn(X, x) ⊕ Hn(Y, y) ∼=

H̃n(X) ⊕ H̃n(Y )

By induction, we then have H̃n(∨k
i=1Xi) ∼= ⊕k

i=1H̃n(Xi)


