
Simplicial homology = singular homology: We have so far introduced two ho-
mologies; simplicial, H∆

∗ , whose computation “only” required some linear algebra,
and singular, H∗, which is formally less difficult to work with, and which, you may
suspect by now, is also becoming less difficult to compute. For ∆-complexes, these
homology groups are the same, H∆

n (X) ∼= Hn(X) for every X. In fact, the iso-
morphism is induced by the inclusion C∆

n (X) ⊆ Cn(X). We almost have the tools
necessary to prove this; we need to note that most of the edifice we have built for
singular homology could have been built for simplicial homology, including relative
homology (for a sub-∆-complex A of X), and a SES of chain groups, giving a LES
sequence for the pair,
· · · → H∆

n (A) → H∆
n (X) → H∆

n (X, A) → H∆
n−1(A) → · · ·

The proof of the isomorphism between the two homologies proceeds by first showing
that the inclusion induces an isomorphism on k-skeleta, H∆

n (X(k)) ∼= Hn(X(k)), by
induction on k using the Five Lemma applied to the diagram

H∆
n+1(X(k), X(k−1)) → H∆

n (X(k−1)) → H∆
n (X(k)) → H∆

n (X(k), X(k−1)) → H∆
n−1(X(k−1))

↓ ↓ ↓ ↓ ↓
Hn+1(X(k), X(k−1)) → Hn(X(k−1)) → Hn(X(k)) → Hn(X(k), X(k−1)) → Hn−1(X(k−1))
The second and fifth vertical arrows are, by an inductive hypothesis, isomorphisms.



H∆
n+1(X(k), X(k−1)) → H∆

n (X(k−1)) → H∆
n (X(k)) → H∆

n (X(k), X(k−1)) → H∆
n−1(X(k−1))

↓ ↓ ↓ ↓ ↓
Hn+1(X(k), X(k−1)) → Hn(X(k−1)) → Hn(X(k)) → Hn(X(k), X(k−1)) → Hn−1(X(k−1))

The first and fourth vertical arrows are isomorphisms because, essentially, we can, in
each case, identify these groups. Hn(X(k), X(k−1)) ∼= Hn(X(k)/X(k−1)) ∼= H̃n(∨Sk)
are either 0 (for n �= k) or ⊕Z (for n = k), one summand for each n-simplex in X.
But the same is true for H∆

n (X(k), X(k−1)) (the chain groupsare 0 for n �= k); and for
n = k the generators are precisely the n-simplices of X. The inclusion-induced map
takes generators to generators, so is an isomorphism. So by the Five Lemma, the
middle rows are also isomorphisms, completing our inductive proof.

Returning to H∆
n (X) I∗→Hn(X), we show that this map is an isomorphism. Any

[z] ∈ Hn(X) is rep’d by a cycle z =
∑

aiσi for σi : ∆n → X . But each image σi(∆n)
is compact, and so meets only finitely-many cells of X. So there is a k for which all of
the simplices map into X(k), and so we may treat z ∈ Cn(X(k). Viewed this way, it
is still a cycle, and so [z] ∈ Hn(X(k)) ∼= H∆

n (X(k)) so there is a z′ ∈ C∆
n (X(k)) and a

w ∈ Cn+1(X(k)) with i#z′−z = ∂w. But thinking of z′ ∈ C∆
n (X) and w ∈ Cn+1(X),

we have the same equality, so [z′] ∈ H∆
n (X) and i∗[z′] = [z] . So i∗ is surjective. If

i∗([z]) = 0, then the cycle z =
∑

aiσi is a sum of characteristic maps of n-simplices
of X, and so can be thought of as an element of C∆

n (X(n)) . Being 0 in Hn(X),
z = ∂w for some w ∈ Cn+1(X) . But as before, w ∈ Cn(X(r)) for some r, and so
thought of as an element of the image of the isomorphism i∗ : H∆

n (X(r)) → Hn(X(r)),
i∗([z]) = 0, so [z] = 0 . So z = ∂u for some u ∈ C∆

n+1(X
(r)) ⊆ C∆

n+1(X) . So [z] = 0
in H∆

n (X). Consequently, simplicial and singular homology groups are isomorphic.



The isomorphism between simplicial and singular homology provides very quick proofs
of several results about singular homology, which would other would require some
effort:
If the ∆-complex X has no simplices in dimension greater than n, then Hi(X) = 0
for all i > n.
This is because the simplicial chain groups C∆

i (X) are 0, so H∆
i (X) = 0 .

If for each n, the ∆-complex X has finitely many n-simplices, then Hn(X) is finitely
generated for every n.
This is because the simplicial chain groups C∆

n (X) are all finitely generated, so
H∆

n (X), being a quotient of a subgroup, is also finitely generated. [We are using
here that the number of generators of a subgroup H of an abelian group G is no
larger than that for G; this is not true for groups in general!]

A quick Mayer-Vietoris computation allows us to compute the homology groups of
surfaces: Σg = a 2-disk D glued to a bouquet X of 2g circles, with “intersection” a
circle, so we have
H̃2(X) ⊕ H̃2(D) → H̃2(Σg) → H̃1(S1) → H̃1(X) ⊕ H̃1(D) → H̃1(Σg) → H̃0(S1)

i.e., 0 ⊕ 0 → H̃2(Σg)
∂→ Z → Z

2g ⊕ 0 → H̃1(Σg) → 0
But the map Z → Z

2g is 0; the generator of H1(S1) is taken to the sum of the edges
in the identifcation map, which cancel in pairs. So we really have the SES’s
0 → H̃2(Σg)

∂→ Z → 0 and 0 → Z
2g → H̃1(Σg) → 0, so H̃2(Σg) = Z and

H̃1(Σg) = Z
2g; all others are 0 by dimension and connectedness considerations.



Some more topological results with homological proofs: The Klein bottle and real
projective plane cannot embed in R

3. This is because a surface Σ embedded in R
3

has a (the proper word is normal) neighborhood N(Σ), which deformation retracts
to Σ; literally, it is all points within a (uniformly) short distance in the normal
direction from the point on the surface Σ. Our non-embeddedness result follows (by
contradiction) from applying Mayer-Vietoris to the pair (A, B) = (N(Σ), R3 \ N(Σ)),
whose intersection is the boundary F = ∂N(Σ) of the normal neighborhood. The
point, though, is that F is an orientable surface; the outward normal (pointing away
from N(Σ)) at every point, taken as the first vector of a right-handed orientation
of R

3 allows us to use the other two vectors as an orientation of the surface. So
F is one of the surface Fg above whose homologies we just computed. This gives
the LES H̃2(R3) → H̃1(F ) → H̃1(A) ⊕ H̃1(B) → H̃1(R3) which renders as
0 → Z

2g → H̃1(Σ) ⊕ G → 0 , i.e., Z
2g ∼= H̃1(Σ) ⊕ G . But for the Klein

bottle and projective plane (or any closed, non-orientable surface for that matter),
H̃1(Σ) has torsion, so it cannot be the direct summand of a torsion-free group! So no
such embedding exists. This result holds more generally for any 2-complex K whose
(it turns out it would have to be first) homology has torsion; any embedding into R

3

would have a neighborhood deformation retracting to K, with boundary a (for the
exact same reasons as above) closed orientable surface.


