
Euler characteristics: Given a finite ∆-complex X (that is, having a finite number
of simplices), the number of simplices in each dimension (which is also the rank of
each of the groups in the simplicial chain complex) are not an invariant of the space,
but, it turns out, the alternating sum χ(X) =

∑
(−1)i dimC∆

i (X) is a topological
invariant, called the Euler characteristic of X. This also is a consequence of the isom-
rphism between singular and simplicial homology (since it implies that the simplicial
homology groups are topological invariants), together with the following result:
Proposition: If 0 → Cn → Cn−1 → · · · → C1 → C0 → 0 is a chain complex
of abelian groups, with each chain group having finite rank, and having homology
groups Hi = Hi(C), then

∑
(−1)irank(Ci) =

∑
(−1)irank(Hi).

The proof consists of noting that if we set Zi = ker ∂i ⊆ Ci and Bi = im∂i+1 ⊆ Zi,
then by one of the Noether isomorphism theorems Bi−1

∼= Ci/Zi, while Hi = Zi/Bi

by definition, so
rank(Bi−1) = rank(Ci) − rank(Zi), so rank(Ci) = rank(Zi) + rank(Bi−1),
while rank(Hi) = rank(Zi) − rank(Bi), so∑

(−1)irank(Ci) −
∑

(−1)irank(Hi)
=

∑
(−1)i[(rank(Zi) + rank(Bi−1)) − (rank(Zi) − rank(Bi))]

=
∑

(−1)i[rank(Bi−1) + rank(Bi)]
=

∑
(−1)i[rank(Bi) − (−1)i−1rank(Bi−1)]

=
∑

(−1)irank(Bi) −
∑

(−1)irank(Bi) = 0, as desired.

Therefore χ(X) =
∑

(−1)irank(H∆
i (X)) =

∑
(−1)irank(Hi(X)) depends only on X,

not on a particular ∆-complex structure.



As a special case, since χ(Dn) = 1 (since the only non-trivial homnology group of
Dn is H0(Dn) = Z), we obtain Euler’s formula: if a 2-disk is triangulated with v
vertices, e edges, and f faces, then v−e+f = 1. Since the singular homology groups
are invariant under homotopy equivalence, we also have that every contractible finite
∆-complex has Euler characteristic 1. So a quick (but only partially successful) way
to show that a connected ∆-complex X is not contractible is to show that χ(X) �= 1.

We can also extend these results to finite CW-complexes; the alternating sum of
the number of cells in each dimension is an invariant of the underlying topological
space. To show this, we introduce yet “another” homology theory, celluluar homol-
ogy. The interesting feature of this is that the chain groups are singular homology
groups! Specifically, if X is a CW-complex with k-skeleta X(k), then the relative
singular homology group Hk(X(k), X(k−1)) ∼= H̃k(X(k)/X(k−1)) ∼= H̃k(∨Sk) ∼= ⊕Z,
with one Z summand for each k-cell of X. From the exact sequence of the triple
(X(k), X(k−1), X(k−2)) we have a connecting homomorphism
dk : Hk(X(k), X(k−1)) → Hk−1(X(k−1), X(k−2)), which as with the sequence for a
pair, “really” takes a relative cycle [z], under

Ck(X(k), X(k−1)) ∂→ Ck−1(X(k−1))
p→ Ck−1(X(k−1), X(k−2))

to the coset of [∂z]. Applying this twice,
Hk(X(k), X(k−1)) → Hk−1(X(k−1), X(k−2)) → Hk−2(X(k−2), X(k−3)),

is therefore zero, since it amounts to taking the ordinary boundary twice. So we have
a chain complex {CCW

n (X), dn} = {Hn(X(n), X(n−1)), dn}, called the cellular chain
complex of X, whose homology groups are the cellular homology groups of X.



The “Euler characteristic” of the cellular complex is the alternating sum of the num-
ber of n-cells in X, which by the homological argument above is the same as the
alternating sum of the ranks of the cellular homology groups. As with simplicial ho-
mology, cellular homology is defined in terms of a particular CW-structure on X, but
again, we can show that it is independent of this structure, by showing that cellular
homology is isomorphic to singular homology. To do this, we first need some basic
facts:
(a) Hn(X(n+1)) ∼= Hn(X), from the long exact sequence of the pair,

0 = Hn+1(X, X(n+1)) → Hn(X(n+1)) → Hn(X) → Hn(X, X(n+1)) = 0,

since Hi(X, X(n+1)) ∼= H̃i(X/X(n+1)) and

(b) If Y is a connected CW-complex with Y (n) = a point, then H̃i(Y ) = 0 for i ≤ n.
For finite dimensional Y (Y = Y (k) for some k), this follows by induction, using the
long exact sequence for the pair (Y (j+1), Y (j)), since

Hi+1(Y (j+1), Y (j)) → H̃i(Y (j)) → H̃i(Y (j+1)) → Hi(Y (j+1), Y (j))

is 0 → H̃i(Y (j)) → H̃i(Y (j+1)) → 0 for i �= j, j + 1, so H̃i(Y (j)) ∼= H̃i(Y (j+1)) for
i < j and i > j + 1, and H̃j(Y (j)) → H̃j(Y (j+1)) is surjective. On the other hand,
H̃i(Y (n)) = H̃({∗}) = 0, so for i ≤ n H̃i(Y ) = H̃i(Y (k)) ∼= · · · ∼= H̃i(Y (n+1)) �
H̃i(Y (n)) = 0, so H̃i(Y ) = 0. The above argument also shows that for any
CW-complex X, H̃i(X(n)) = 0 for i > n, since 0 = H̃i(X(0)) ∼= · · · ∼= H̃i(X(n−1)) ∼=
H̃i(X(n)).



For the infinite dimensional case, we recycle an old argument to show that since any
cycle [z] in H̃i(Y ) is a finite union of singular simplices, and a compact set meets only
finitely many cells, we can think of z as a chain in some Y (k), where by the above it
is a boundary, so it is a boundary in Y , so [z] = 0, so H̃i(Y ) = 0.

The same argument above also shows that for i < n, H̃i(X(n)) ∼= H̃i(X) (under the
inclusion-induced homomorphism); for finite-dimensional complexes this requires only
H̃i(X) = H̃i(X(k)) ∼= · · · ∼= H̃i(X(n+1)) ∼= H̃i(X(n)), while for infinite-dimensional
complexes the same final argument shows injectivity, and a parallel argument [any
representative of [z] ∈ H̃i(X) is really a chain in some X(r), so is in the image of
H̃i(X(n))

∼=→ H̃i(X(r)) → H̃i(X)] proves surjectivity.



With these facts in hand, we proceed to prove that HCW
n (X) ∼= Hn(X). The basic

idea is that HCW
n (X) is computed from

Hn+1(Xn+1, Xn)
dn+1→ Hn(Xn, Xn−1) dn→ Hn−1(Xn−1, Xn−2), which is really

Hn+1(Xn+1, Xn)
∂n+1→ H̃n(Xn)

p∗→ Hn(Xn, Xn−1) ∂n→ H̃n−1(Xn−1)
p∗→ Hn−1(Xn−1, Xn−2)

built from three different LESs of pairs! (This is, however, not exact.)

H̃n(X) ∼= H̃n(X(n+1)), but H̃n(X(n+1)) is part of a long exact sequence

Hn+1(X(n+1), X(n))
∂n+1→ H̃n(X(n)) ι∗→ H̃n(X(n+1)) → Hn(X(n+1), X(n))

with Hn(X(n+1), X(n)) ∼= H̃n(X(n+1)/X(n)) = 0 (its n-skeleton is a point), so

H̃n(X(n+1)) ∼= H̃n(X(n))/ ker(ι∗) = H̃n(X(n))/im(∂n+1).
The LES of the pair

· · · → 0 = H̃n−1(X(n−2)) → H̃n−1(Xn−1)
p∗→ Hn−1(Xn−1, Xn−2) → · · ·

implies that the second map p∗ is injective, so ker dn = ker ∂n.
The LES sequence of the pair

· · · → 0 = H̃n(X(n−1)) → H̃n(Xn)
p∗→ Hn(Xn, Xn−1) → · · ·

implies that the first map p∗ is injective, so p∗ maps im ∂n+1 isomorphically to
im dn+1 = p∗(im ∂n+1), and H̃n(X(n)) isomorphically to im p∗ = ker ∂n = ker dn.
Consequently, p∗ : H̃n(X(n)) → ker dn induces an isomorphism

H̃n(X) ∼= H̃n(X(n+1)) ∼= H̃n(X(n))/im ∂n+1

∼=−→ ker dn/im dn+1 = HCW
n (X).



As before, this isomorphism immediately leads to some useful facts, both about cel-
lular and singular homology, that are much tougher to establish without the isomor-
phism:

The cellular homology groups depend only on the underlying topological space, not
on the CW structure.
The Euler characteristic of a finite CW-complex is well-defined.
If a CW-complex X has no k-cells, then Hk(X) = 0 (since the k-th cellular chain
group is 0).
More generally, if a CW-complex X has r k-cells, then Hk(X) has a generating set
with at most r elements.
If X is n-dimensional, then Hn(X) is free abelian
(since HCW

n (X) = ker dn ⊆ CCW
n (X), since CCW

n+1(X) = 0, so im dn+1 = 0).
If a CW-complex X has no k−2- and k-cells, then Hk−1(X) is the free abelian group
on the k − 1-cells of X (since the chain complex is 0 → CCW

k−1 (X) → 0 at that point).

Together, the third and sixth facts give a much quicker way to compute the homology
groups of spheres Sn (for n ≥ 2, anyway), for example, since Sn has a CW-structure
with one 0-cell and one n-cell. Another quick collection of examples is Sn ×Sm with
n = m ≥ 2 (1 0-cell, 2 n-cells, and 1 2n-cell) or |n− m| ≥ 2 and n, m ≥ 2 ( 1 each of
0-, n-, m-, and (n + m)-cells).



More involved computations require a better understanding of what the boundary
maps

Hk(X(k), X(k−1)) dn−→ Hk−1(X(k−1), X(k−2))
are. These groups have as bases, essentially, the k-cells {en

α} and (k− 1)-cells {en−1
β }

of X. In terms of these bases, letting ϕ : Dn → X(n) be the characteristic map
of en

α, dn(en
α) =

∑
nαβen−1

β , where nαβ counts how many times the attaching map
f = ϕ|∂Dn : Sn−1 → X(n−1) of en

α “passes over” en−1
β , in the following sense: taking

the composition

Z = H̃n−1(Sn−1)
f∗→ H̃n−1(X(n−1))

p∗→ Hn−1(X(n−1), X(n−2))
∼= H̃n−1(X(n−1)/X(n−2)) ∼= H̃n−1(∨βSn−1) ∼= ⊕βH̃n−1(Sn−1) = ⊕βZ

projβ−→ Z

sends 1 to nαβ. (We omit the proof, but what else could it be....?)

nαβ is, then, what 1 gets sent to under the map on H̃n−1 induced by the map

Sn−1 f→ X(n−1) → X(n−1)/X(n−2) ∼= ∨βSn−1 pβ→ Sn−1

which is, at least in principal, computable, given enough information about the at-
taching maps of our CW-complex X. This number nαβ is called the degree of the
map Sn−1 → Sn−1. [It is in fact true that maps f : Sn → Sn are determined up to
homotopy by their degree, but we will (probably) not prove this.] For example, for
a homeomorphism g : Sn−1 → Sn−1, its degree is either 1 or −1 (since the induced
map on H̃n−1 is an isomorphism).


