
Homology with coefficients: The chain complexes that we have dealt with so
far have had elements which are Z-linear combinations of basis elements (which are
themselves singular simplices or equivalence classes of them); that is, the chain groups
have been free abelian groups. Formally, though, there is no reason to restrict our-
selves to Z coefficients; all that is required is to add coefficients and take the negative
of a chain (i.e., the negatives of its coefficients). Any abelian group G can be used
as coefficient group; the (singular or simplicial) chain complex C∗(X; G) consists of
the groups Cn(X; G) = {∑ giσi : σi : ∆i → X} of formal G-linear combinations of
(singular or actual) i-simplices in X. Defining boundary maps as before, we write
∂igσ =

∑
(−1)jgσ|faces; (−1)j isn’t thought of as an integer, but as altering the coeffi-

cient assigned to a face, between g and −g. Our formulas then go through unchanged,
to show that ∂2 = 0, so C∗(X; G) is a chain complex. Its homology groups are called
the (simplicial or singular) homology groups of X with coefficients in G, denoted
H∗(X; G). “Ordinary” homology, in this context, would be denoted H∗(X; Z)
The machinery we have built up to work with ordinary homology carries over to
homology with coefficients; none of our proofs really used the fact that our coefficient
group was Z. With one exception; our computations of simplicial homology groups,
via Smith normal form, specifically used row and column operations over Z. But
this points out the fact that it is really linear algebra that is required to carry out
computations; if we choose a coefficient group which is (the additive group of) a field
F , then we can treat our chain groups Cn(X; F ) as vector spaces over F , and the
boundary maps are linear transformations, where we know that Bi = im ∂i+1 is a
subvector space of Zi = ker ∂i, and Hi(X; F ) = Zi/Bi is a vector space over F , i.e.,
Hi(X; F ) ∼= Fni for some ni (possibly infinite).



[We use the field structure to prove this, but never need the multiplicative structure
to present it. There is something to prove here, though: if z is a cycle, so is az
for any a ∈ F (formally, this is multiplying coeffiecients), and the same is true for
boundaries. But the point is that we are imposing the vector space structure from
the “outside” (the computations don’t care), and noting that from this point of view
∂(az) = a∂z, i.e., that ∂ is a linear transformation. This helps us do computations,
but isn’t required to do them.] Popular coefficient groups to use are Zn, Q, R, and C.
We can also introduce reduced homology with coefficients, by augmenting a chain
complex with an evaluation map C0(X; G) → G → 0, which takes the sum of the
coefficients of a 0-chain. We can also extend these ideas to cellular homology. Working
through the computations again, we find, for a CW-complex X, that

Hn(X(n), X(n−1); G) ∼= H̃n(∨Sn; G) ∼= ⊕G,
one summand for each n-cell, and we can construct cellular homology with coefficients
and show that HCW

n (X; G) ∼= Hn(X; G) in the exact same way (the same of course,
is true of simplicial homology with coefficients). The only point to really make is that
the computation of the cellular boundary maps

Hn(X(n), X(n−1); G) → Hn−1(X(n−1), X(n−2); G)
again amounts to computing the maps

f∗ : G = Hn−1(Sn−1; G) → Hn−1(Sn−1; G) = G

induced by the attaching map
f : Sn−1 → X(n−1) → X(n−1)/X(n−2) ∼= ∨Sn−1 → Sn−1

of an n-cell; if this map has degree m, then f∗ : G → G is multiplication by m.



So, for example, we can compute the homology groups Hk(RPn; Z2) via cellular ho-
mology by noting that using the standard CW-structure with one cell in each dimen-
sion, where before the cellular boundary maps Z → Z were either 0 or multiplication
by 2, now the maps Z2 → Z2 are all 0 (since in Z2 multiplication by 2 is 0). So in
every computation ker = Z2 and im = 0, so Hk(RPn; Z2) ∼= Z2 for all 0 ≤ k ≤ n,
and is 0 otherwise.

Coefficients do introduce one additional feature; a homomorphism of groups
ϕ : G → H induces chain maps on complexes Cn(X; G) → Cn(X; H), via∑

giσi �→
∑

ϕ(gi)σi. Even more, a short exact sequence of coefficient groups
0 → K → G → H → 0 induces SESs of chain complexes
0 → C∗(X; K) → C∗(X; G) → C∗(X; H) → 0, giving LEHSs interweaving the ho-
mology groups of X with coefficients in G, H, and K. E.g., the SES

0 → Z
×m→ Z → Zm → 0

gives the LEHS

· · · → Hn(X)
(×m)∗→ Hn(X) → Hn(X; Zm) → Hn−1(X)

(×m)∗→ Hn−1(X) → · · · .
Using the meta-fact that an exact sequence

A
α→ B

β→ C
γ→ D

δ→ E

yields the short exact sequence

0 → B/im α
β→ C

γ→ ker δ → 0
(since im α = ker β and im γ = ker δ), we get



0 → Hn(X)/{m[z] : [z] ∈ Hn(X)} → Hn(X; Zm) → {[z] ∈ Hn−1(X) : m[z] = 0} → 0
is exact. If m = p = prime, then knowing the homology of X allows us to compute
Hn(X; Zp), since we can compute the two groups on the ends (hence their dimensions
over Zp), which allows us to compute the dimension of Hn(X; Zp), hence compute
Hn(X; Zp). This last part follows since the alternating sum of the dimensions over
Zp of the terms in this exact sequence is 0, for the exact same reason this is true
about ranks over Z: such a number is invariant under taking homology (the proof for
rank over Z goes through unchanged).

Homology with coefficients can, in some instances, tell us things that ordinary homol-
ogy can’t. For example, X = RP 2 has reduced homology Z2 in dimension 1 only, and
so the quotient map q : X → X/X(1) ∼= S2 induces the trivial map on all homology
groups, using Z coefficients. But using Z2-coefficients, the LES of the pair (X(1), X)
gives, in part,

· · · → 0 = H̃2(X(1); Z2) → H̃2(X; Z2)
q∗→ H̃2(X/X(1); Z2) → · · ·

so q∗ : Z2 = H̃2(X; Z2) → H̃2(X/X(1); Z2) is injective, hence non-trivial, so q is not
a homotopically trivial map. Which is something that could not be concluded from
the induced map on ordinary homology.



As another example, homology with Z2-coefficients play a role in a proof of the
Borsuk-Ulam Theorem: For every map f : Sn → Rn, there is an x ∈ Sn with
f(x) = f(−x). As part of our proof, we need: if f : Sn → Sn is an odd map
(i.e., f(−x) = −f(x)), then f has odd degree. The idea is that f induces a map
g : RPn → RPn (first take the composition Sn → Sn → RPn, and note that it
factors through a map from RPn) satisfying g ◦ q = q ◦ f .
q : Sn → RPn is a (2-sheeted) covering space map. There is a short exact sequence
of chain complexes

0 → Cn(RPn; Z2)
τ→ Cn(Sn; Z2)

q#→ Cn(RPn; Z2) → 0
where τ is the transfer map τ (σ) = σ̃1 + σ̃2, the sum of the two lifts of a singular
simplex into RPn, to Sn; the lifts exist by the lifting criterion, since the domain,
∆n, of σ is contractible. (This last statement also shows that q# is surjective.)
q#(σ̃1 + σ̃2) = σ+σ = 0, since we are using Z2-coefficients; OTOH, if , q#(

∑
σi) = 0,

then the σi must occur as pairs of lifts of singular simplices in RPn, giving exactness
at the middle term. Finally, the transfer map is injective, since τ (

∑
σi) = 0 means

that the σ̃i,j must pair off. They can’t do this as σ̃i,1, σ̃i,2 (they don’t agree as maps,
since they send the basepoint to different points), so they must pair with different
initial indices. Then σi1 = q ◦ σ̃i1,j1 = q ◦ σ̃i2,j2 = σi2 means that we can eliminate
σi1 + σi2 = 0 from the sum; finitely many repetitions give

∑
σi = 0.



We therefore get a long exact homology sequence

· · · 0 → Hn(RPn; Z2)
τ∗→ Hn(Sn; Z2)

q∗→ Hn(RPn; Z2)
∂→ Hn−1(RPn; Z2) → 0 · · ·

· · · 0 → Hi(RPn; Z2)
∂→ Hi−1(RPn; Z2) → 0 · · ·

· · · 0 → H1(RPn; Z2)
∂→ H0(RPn; Z2)

τ∗→ H0(Sn; Z2)
q∗→ H0(RPn; Z2) → 0

(the two 0’s at top are H̃n+1(RPn; Z2) and H̃n−1(Sn; Z2), the rest are similar) which,
plugging in the known values for the groups is

0 → Z2
τ∗→ Z2

q∗→ Z2
∂→ Z2 → 0 · · 0 → Z2

∂→ Z2 → 0 · · 0 → Z2
∂→ Z2

τ∗→ Z2
q∗→ Z2 → 0

But for the initial part, τ∗ is then injective, hence surjective, and ∂ is surjective, hence
injective, so q∗ is the zero map. In the middle part we have isomorphisms, while the
final part again is a zero map between two isomorphisms.

As we have remarked, an odd map f : Sn → Sn induces a map g : RPn → RPn,
which in turn induce maps between chain groups in two short exact transfer sequences.
These maps are chain maps; by definition they commute with the induced map on
chains from the quotient map, and they commute with the transfer map since the
two lifts of g ◦ σ are f ◦ σ̃i, since these are lifts and lifts are unique. So their sums
are the same, implying that τ ◦ g = f ◦ τ .
These therefore descend to maps between the corresponding two long exact transfer
sequences. This, it turns out, allows us to pull ourselves up by our bootstraps,
allowing us to infer information about the map g∗ : Hn(RPn; Z2) → Hn(RPn; Z2)
from information about the map g∗ : H0(RPn; Z2) → H0(RPn; Z2) .



In the commutative squares

Hi(RPn; Z2)
∂−−−−→ Hi−1(RPn; Z2)

g∗
� g∗

�
Hi(RPn; Z2)

∂−−−−→ Hi−1(RPn; Z2)

, 1 ≤ i ≤ n,

Hn(RPn; Z2)
τ∗−−−−→ Hn(Sn; Z2)

g∗
� f∗

�
Hn(RPn; Z2)

τ∗−−−−→ Hn(Sn; Z2)
the horizontal maps are isomorphisms, and for the first, the vertical arrow on the right
is an isomorphism (by induction; the base case is H0 which amounts to saying that g
induces a bijection on path components), so the arrow on the left is an isomorphism.
For the second, the vertical arrow on the left is an isomorphism by the argument just
given, so the arrow on the right is an isomorphism. But this arrow is the induced
map on top-dimensional homology of an n-sphere, and so by our discussion on cellular
homology is multiplication, in Z2, by the degree of the map f . If this degree were
even, then the map on Z2 would be the 0 map; therefore, the degree is odd. Which
finishes the proof of the preliminary result.
For the proof of Borsuk-Ulam, given f : Sn → Rn, suppose that f(x) 	= f(−x) for
every x. Then the fcn g(x) = f(x) − f(−x) never takes the value 0, so the fcn
h : Sn → Sn−1 given by h(x) = g(x)/||g(x)|| is cts. But h(−x) = −h(x), so the fcn
k = h|Sn−1 : Sn−1 → Sn−1 is an odd fcn, and so has odd degree, and, in particular,
induces a non-trivial map on the level of Hn−1(Sn−1). But this map factors through
Hn−1(Sn) = 0, since k = h ◦ ι : Sn−1 → Sn → Sn−1, a contradiction. So there must
be an x with f(x) = f(−x). So, e.g, there are somewhere on Earth antipodal points
that have both the exact same level of background radiation and the same annual
rainfall (or any two other contiouously varying quantities you care to name).


