
Cohomology: There is “dual” theory to the homology theory, called “cohomology
theory”, which is based on the following observation: if we have a chain complex

· · · → Cn
∂n→ Cn−1 → · · · → C0 → 0

with, we assume for the moment, finitely-generated free abelian chain groups, then,
thinking in terms of Z-vector spaces, the boundary maps are represented by integer
matrices dn : Cn → Cn−1. The transposes of these matrices give rise to linear maps
dT

n : Cn−1 → Cn, which form a chain complex (since dT
nd

T
n−1 = (dn−1dn)T = 0T = 0)

running the opposite direction

0→ C0 → C1 → · · · → Cn−1
δn→ Cn → · · ·

whose homology groups we can then compute in the usual way. This is the basic idea
behind cohomology. The transpose is not “really” a map from Cn−1 to Cn, though, it
is more properly thought of as a map between the dual vector spaces C∗

n−1, C
∗
n. The

formal way to construct the theory is to introduce the “Hom” functor: for a (fixed)
abelian group G and an abelian group A,

Hom(A,G) = {f : A→ G : f is a homomomorphism} .
For R-vector spaces V , for example, the usual dual vector space is V ∗ = Hom(V,R).
The basic point is that Hom “turns arrows around”; given a homomorphism
ϕ : A→ B, there is an induced homomorphism ϕ∗ : Hom(B,G)→ Hom(A,G) given
by ϕ∗(f) = f ◦ϕ . This satisfies (ϕ◦ψ)∗ = ψ∗◦ϕ∗ and I∗ = I, as a quick computation
establishes. Just as important for us is that 0∗ = 0.



Given a chain complex · · · → Cn
∂n→ Cn−1 → · · · → C0 → 0 (with no assump-

tions on the chain groups) and a “coefficient” group G, we can dualize the complex
to obtain

(*) 0→ Hom(C0, G)→ Hom(C1, G)→ · · · → Hom(Cn−1, G)
∂∗

n→ Hom(Cn, G)→ · · ·
We will usually write ∂∗n = δn, calling them the coboundary maps. These coboundary
maps are defined by ∂∗n(f)(x) = f(∂nx) for f ∈ Hom(Cn−1, G) and x ∈ Cn (since
∂∗n(f) ∈ Hom(Cn, G)). Just as in the finitely generated case, δn+1 ◦ δn = 0, since for
any f ∈ Hom(Cn−1, G), and x ∈ Cn+1,

δn+1 ◦ δn(f)(x) = δn(f)(∂n+1x) = f(∂n∂n+1x) f(0) = 0,
so δn+1 ◦ δn(f) = 0. Consequently, (*) is a chain complex (although technically, with
its indices rising it is called a cochain complex), with the attendant homology groups
(which we call cohomology groups!). We could treat this, really, as homology, by
renumbering so that C ′

−n = Hom(Cn, G); then the coboundary map decreases index,
although our homology groups then live in negative dimensions! But cohomology is
inherently arrow-reversing, so it seems better to just live with index-increasing maps?

In particular, starting with a space (or Δ-complex or CW-complex) X, dualizing the
standard singular (or simplicial or cellular) chain complex Cn(X) we obtain the singu-
lar (or...) cochain complex (Cn(X;G), δn−1), whose elements are cochains, and whose
homology groups are the singular (or...) cohomology groups of X, with coefficients
in G. As with homology, it is not immediately clear that the simplicial and cellular
cohomology groups are topological invariants, but the singular homology groups are;
the only input is X, from which we build Cn(X) and Cn(X) = Hom(Cn(X), G).



We shall see that much of the edifice that we have built around singular homology
goes through, with small changes made necessary by the reversal of arrows. One way
to see a large part of this is by the fact that the homology groups of a chain complex
determine the associated cohomology groups. To see how this might be formulated,
we first note that there is a homomorphism h : Hn(C;G)→ Hom(Hn(C), G), for any
chain complex C, defined as follows: given [f ] ∈ Hn(C;G) and [z] ∈ Hn(C), we have
f ∈ Hom(Cn, G) (with δf = 0; it is a cocycle), and z ∈ Zn ⊆ Cn, so the element
f(z) ∈ G makes sense. So why not just try h([f ])([z]) = f(z) ? We can show that
this is well-defined; if [z] = [z′], then [z] − [z′] = [z − z′] = 0, so z − z′ = ∂w for
some w ∈ Cn+1, and then f(z) − f(z′) = f(z − z′) = f(∂w) = (δf)(w) = 0, since
δf = 0. OTOH, if [f ] = [f ′], then f − f ′ = δg for some g ∈ Hom(Cn−1, G), and then
f(z) − f ′(z) = δg(z) = g(∂z) = g(0) = 0, since z is an n-cycle. So h is well-defined.
And since h([f ] − [f ′])([z]) = (f − f ′)(z) = f(z) − f ′(z) = h([f ])([z]) − h([f ′])([z]),
we have h([f ]− [f ′]) = h([f ])− h([f ′]), so h is a homomorphism.
Even more, though, if the chain groups Cn are free abelian, then h is onto. To see
this, note that any ϕ : HnC = Zn/Bn → G gives rise to a homom ϕ1 : Zn → G, by
ϕ1(z) = ϕ([z]). But since Cn is free abelian, Zn = ker ∂n is a direct summand of Cn;
Bn−1 = im ∂n ⊆ Cn−1 is a subgroup of a free abelian group, so is free abelian, and
a basis for Bn−1, pulled back to a collection of elements {vi} of Cn, together with a
basis for Zn, gives a basis for Cn. [Showing that the two bases span complementary
subspaces, and together span Cn, is straightforward.] The point to this is that our
homom ϕ1 can be extended to a homom ϕ2 : Cn → G by declaring that ϕ2(vi) = 0 for
all i and that ϕ2 = ϕ1 on Zn. Then δ(ϕ2) = 0, since δ(ϕ2)(x) = ϕ2(∂x) = ϕ1(∂x) =
ϕ([∂x]) = ϕ(0) = 0 for all x. [ϕ2(∂x) = ϕ1(∂x) since ∂x ∈ Bn ⊆ Zn .]



So ϕ2 is a cocycle, and h([ϕ2])([z]) = ϕ2(z) = ϕ1(z) = ϕ([z]), so h([ϕ2]) = ϕ, as
desired.
So we have the beginnings of a short exact sequence;

0→ kerh→ Hn(C;G) h→ Hom(Hn(C), G)→ 0
This sequence splits; our construction above actually describes a homom k : ϕ �→ ϕ2,
since ϕ �→ ϕ1 is a homom, and ϕ2 is essentially ϕ1 extended by 0 to a subspace
complementary to Zn (in matrix terms, we pad the matrix for ϕ1 with columns of
0’s). Since h(ϕ2) = ϕ, k is a right inverse to h. This then implies, by the Splitting
Lemma (?), that

Hn(C;G) ∼= Hom(Hn(C), G)⊕ kerh
and so to show that cohomology depends only on the homology groups of C, it remains
to show that kerh can be computed from the homology groups.

kerh = {[f ] : f : Cn → G and f(z) = 0 for all z ∈ Cn with ∂z = 0}
There is another map j : Hom(Bn−1, G) → Hn(C;G) given by j(ϕ) = [ψ], where
ψ : Cn → G is defined by ψ(x) = ϕ(∂x) [note that δψ(x) = ψ(∂x) = ϕ(∂2x) = 0
for all x, so ψ is a cocycle], and again, this map is a homomorphism. Further,
im j = kerh, since h(j(ϕ))([z]) = h([ψ])([z]) = ψ(z) = ϕ(∂z) = ϕ(0) = 0 for all [z],
giving one containment, and given ψ with h(ψ) = 0, we define ϕ : Bn−1 → G by
ϕ(∂x) = ψ(x); if ∂x = ∂y, then ψ(x− y) = 0 since ∂(x− y) = 0, so ψ(x) = ψ(y), and
so ϕ is well-defined. Yet again, ϕ is a homom. And certainly j(ϕ) = ψ (by pretending
that the equation ϕ(∂x) = ψ(x) defines ψ !).



j(ϕ) = [ψ : x �→ ϕ(∂x)] ∈ Hn(C, G)}
Therefore, by one of the isomorphism theorems, kerh ∼= Hom(Bn−1, G)/ ker j. But
ker j consists of those maps ϕ : Bn−1 → G for which x �→ ϕ(∂x) is a coboundary
(δψ)(x) = ψ(∂x) for some ψ : Cn−1 → G. On the face of it, it looks like ϕ itself could
stand in for ψ, but the point is that ϕ and ψ have different domains. ψ has domain
Cn−1, while ϕ has domain Bn−1. But this means that ker j is the image of the map
Hom(Cn−1, G) → Hom(Bn−1, G) dual to the inclusion map Bn−1 ↪→ Cn−1 . Note
that we can put a third term in the middle of these two;

Hom(Cn−1, G)→ Hom(Zn−1, G)→ Hom(Bn−1, G)
since Bn−1 ↪→ Zn−1 ↪→ Cn−1. But the map Hom(Cn−1, G) → Hom(Zn−1, G) is
surjective, since Zn−1 is a direct summand of Cn−1 (as before, we extend a map ϕ
from zn−1 by zero of a complementary subspace to build a map from Cn−1 whose
image is ϕ). So ker j is also the image of the dual to the inclusion i : Bn−1 ↪→ Zn−1.

The reason for tinkering with things in this way is that Bn−1 and Zn−1 fit into a
short exact sequence

(**) 0→ Bn−1 → Zn−1 → Hn−1(C)→ 0
with dual sequence

(***) 0← Hom(Bn−1, G)← Hom(Zn−1, G)← Hom(Hn−1(C), G)← 0
This sequence is not exact, but it is a cochain complex, and so has its own homology
groups. Note that the group that we are after is the homology of this cochain complex
at the spot Hom(Bn−1, G). Since by hypothesis Cn−1 is free abelian, so are Bn−1

and Zn−1; (**) is then an example of a free resolution of the abelian group Hn−1(C).



Since I am getting tired of doing homological algebra and not topology, we will finish
our proof that kerh (which we now know to be the (co)homology group mentioned
above) depends only on the homology of C by appealing to:

The homology groups of the cochain complex dual to a free resolution of a group H
depend only on the group H, and not on the particular free resolution chosen.

The particular homology group that we are interested in is known in the literature
a Ext(H,G). We will not be interested in knowing why it is called that, but only in
the fact that, as a consequence we have the

Universal coefficients Theorem: For any chain complex C,
Hn(C;G) ∼= Hom(Hn(C), G)⊕ Ext(Hn−1(C), G) .

together with some observations on how to calculate Ext, based on its indifference to
the resolution used to compute it. From the exact sequence

0→ 0→ Z→ Z→ 0, the dual 0← 0← G← G← 0 gives Ext(Z, G) = 0 ; from

0→ Z
×n→ Z→ Zn → 0, the dual

0← G
×n← G→ Hom(Zn, G)→ 0 gives Ext(Zn, G) = G/nG ; and the fact that

Ext(H1⊕H2, G) ∼= Ext(H1, G)⊕Ext(H2, G) (by taking the direct sum of two resolu-
tions, and using the fact that Hom(−, G) respects direct products, and that homology
respects direct products)

suffice to compute Ext(H,G) for any finitely-generated abelian group H, which will
usually suffice for our purposes.



Applying all of this homological algebra (there is no topology underlying any of the
above work, except as motivation) to our chain complexes from a space X, we find
that
Hn(X;G) ∼= Hom(Hn(X), G)⊕ Ext(Hn−1(X), G) .
Since the groups on the right are the same whether we use singular, simplicial, or
cellular chain complexes to build them, the same is true for the left. So the singular,
simplicial, and cellular cohomology groups are all isomorphic (when any two of them
are defined)! If we were to chase through the computations above, we could recover
the fact that the isomorphisms can be induced by the inclusion maps of the various
chain groups.


