
By universal coefficients, Hn(X;G) ∼= Hom(Hn(X), G) ⊕ Ext(Hn−1(X), G), so co-
homology is not really anything “new”; the groups themselves provide no new infor-
mation to distinguish spaces. So why should we care? And what does it measure,
anyway? One way to answer that question is to study what a cochain is, and what
it means for a cocycle to not be a coboundary.
Let us think in terms of simplicial cochains for a ∆-cplx X. An n-cochain assigns
elements of G to the n-simplices of X. Think for example of a 0-cochain ϕ, which
assigns values to the vertices. The coboundary δϕ assigns the difference ϕ(v1)−ϕ(v0)
to each oriented 1-simplex [v0, v1]. A 1-cochain, assigning values to each 1-simplex, is
a coboundary if those values represent the differences of a fcn defined on the vertices.
A 1-cocycle, on the other hand, is a 1-cochain ψ for which

δψ([v0, v1, v2]) = ψ([v0, v1]) − ψ([v0, v2]) + ψ([v0, v1]) = 0 (*)
for every 2-simplex (since the map is 0 ⇔ it is 0 on each basis element). The
point is that if a 1-cochain represents the differences of the values of some globally
defined function on the vertices, across each 1-simplex, then (*) must certainly be
true; (a − b) + (b − c) + (c − a) = 0. This is what 1-coboundary ⇒ 1-cocycle says.
The fact that the opposite need not be true is a reflection of the topology of X;
the condition (*) essentially says that the values on edges represent differences of
values on the vertices “locally”. This can be related to the idea of vector fields
versus conservative vector fields, in analysis; a vector field will integrate around the
boundary of a 2-simplex to give 0, but a vector field is conservative (equal to the
gradient of a function) ⇔ it integrates to 0 around every closed loop. In higher
degrees we can view things analogously, and these can be related, analytically, to
integrals over correspondingly higher dimensional regions.



As mentioned previously, essentially all of the machinery we built to study homology
can be adapted to study cohomology. A map f : X → Y induces a (chain) map

f# : Cn(X) → Cn(Y );
dualizing, we get a (chain) map

f# = f∗# : C∗
n(Y ;G) → C∗

n(X;G),
which gives a homomorphism

f∗ : Hn(Y ;G) → Hn(X;G).
This satisfies (f ◦ g)∗ = g∗ ◦ f∗ (since this is true for the chain complexes and carries
over to the duals) and I∗ = I, so we immediately recover the analogous result that
a homeo induces isos on cohomology. More, homotopic maps induce equal maps on
cohomology, since if f, g : X → Y are homotopic, then f#, g# are chain homotopic,
via a chain homotopy

H; H∂ + ∂H = f# − g#.
]
Dualizing, we obtain a “chain cohomotopy” (?) H∗, decreasing degree by one, with

δH∗ +H∗δ = f# − g#

and therefore, by the same proof, f# and g# induce the same map f∗ = g∗ on co-
homology. Consequently, we recover the result that a homotopy equivalence between
spaces induces isomorphisms between their cohomology groups.



We can define relative cohomology groups Hn(X,A;G) by defining
Cn(X,A;G) = Hom(Cn(X,A), G) = Hom(Cn(X)/Cn(A), G).

Maps of pairs induce, as in the homology case, homomorphisms between relative
cohomology groups. Dualizing the SES

0 → Cn(A) ι→ Cn(X)
p→ Cn(X)/Cn(A) → 0

we get a sequence

(*) 0 → Hom(Cn(X)/Cn(A), G)
p∗
→ Hom(Cn(X), G) ι∗→ Hom(Cn(A), G) → 0

which turns out to be exact; this is basically because Cn(X)/Cn(A) has basis chains
in X that do not map completely into A, so really

Cn(X) = Cn(A) ⊕ Cn(X)/Cn(A),
which consequently means that

Hom(Cn(X), G) ∼= Hom(Cn(A), G)⊕ Hom(Cn(X)/Cn(A), G),
and under the isomorphism the sequence (*) becomes the “obvious” one, which is
exact. The coboundary maps

δ : Hom(Cn(X)/Cn(A), G) → Hom(Cn+1(X)/Cn+1(A), G)
are given by, for ϕ : Cn(X)/Cn(A) → G, composing with p to get a map
ϕ1 = ϕ◦p : Cn(X) → G, taking its coboundary (in X), and noting that the resulting
map δϕ1 = ψ1 is 0 on Cn+1(A) (since ψ1(a) = ϕ1(∂a) = ϕ(p(∂a)) = ϕ(0) = 0, since
∂a ∈ Cn(A), so p(∂a) = 0.



These exact sequences (*) consequently, as before, give rise to a LEHS (LECS?)
· · · → Hn+1(A;G) → Hn(X,A;G) → Hn(X;G) → Hn(A;G) → Hn−1(X,A;G) → · · ·
Similarly there is a LEHS for a triple B ⊆ A ⊆ X. The universal coefficients theorem
applies to relative homology, since the relevant chain groups are free abelian, so

Hn(X,A;G) ∼= Hom(Hn(X,A), G)⊕ Ext(Hn−1(X,A), G)
Cohomology on small chains can be defined analogously; Hn

U (X;G) is the homology
of the cochain complex Hom(CU

n (X), G). The inclusion-induced map
ι# : Hom(Cn(X), G) → Hom(CU

n (X), G)
induces isomorphisms of cohomology groups, by dualizing the proof we didn’t do for
homology, namely that there is a chain map b : Cn(X) → CU

n (X) such that ι ◦ b and
b◦ ι are chain homotopic to the identity. As above, the duals of the chain homotopies
form the necessary chain (co)homotopies. We can then recover excision:

If A,B ⊆ satisfy the usual requirements for excsion, then
ι∗ : Hn(X,A;G) → Hn(B,A ∩B;G) is an isomorphism.

the proof of building the iso

Hn(Cn(X)/Cn(A);G) → Hn(Hom(C{A,B}
n (X)/Cn(A), G))

via SESs (arguing as above that the duals of the relevant SESs are exact) and the
Five Lemma applied to the resulting LEHSs, together with

Hom(C{A,B}
n (X)/Cn(A), G) ∼= Hom(Cn(B)/Cn(A ∩B), G)

because the domains are isomorphic, inducing the corresponding iso in cohomology,
goes through without change.



The same reinterpretation from homology also gives the excision isomorphism
Hn(X,A;G) → Hn(X \B,A \B;G).

Dualizing the SES

0 → Cn(A ∩B) → Cn(A) ⊕ Cn(B) → C
{A,B}
n (X) → 0

gives the (short exact, by the argument above) sequence

0 → Hom(C{A,B}
n (X), G) → Hom(Cn(A), G) ⊕ Hom(Cn(B), G) → Hom(Cn(A ∩B), G) → 0

yielding the Mayer-Vietoris sequence for cohomology:
· · · → Hn−1(A ∩B) → Hn(X) → Hn(A) ⊕Hn(B) → Hn(A ∩B) → Hn+1(X) → · · ·
(supressing the coefficient group G to make this fit on a line...).
Reduced cohomology can be defined by taking the dual of the augmented chain com-
plex defining homology. As with homology, H̃n(X;G) ∼= Hn(X;G) for n ≥ 1 and,
from the universal coefficients theorem, H̃0(X;G) ∼= Hom(H̃0(X), G). We can think
of Hom(H̃0(X), G) as a direct product of Gs, one for each path component of X; al-
ternatively, this is the set of all functions from X to G that are constant on path com-
ponents. Hom(H̃0(X), G) is slightly smaller; since the augmentation map C0(X) → Z

sends every point to 1, the dual map
G ∼= Hom(Z, G) → Hom(C0(X), G) → · · ·

sends g ∈ G to the map which sends each basis element of C0(X) (i.e., points) to g.
So H̃0(X;G) is built by modding outm in addition, by this map; so H̃0(X;G) can
be identified with the set of non-constant functions from the path-components of X
to G.



As for homology, a combination of excision, the LES of a pair, and the Five Lemma
implies that Hn(X,A;G) ∼= H̃n(X/A;G) when A has a neighborhood that deforma-
tion retracts to it.

With these facts in hand, we can carry out calculations of cohomology groups in much
the same spirit as we did for homology. For example, Mayer-Vietoris and induction
implies that Hk(Sn;G) ∼= G for k = 0, n and 0 otherwise. In most cases, though,
if all that we are after are the groups themselves, the universal coefficients theorem
provides a faster computational route. In fact, at least for Z-coefficients, if we define
the torsion subgroup T of an abelian group G to be the set of elements of finite order
in G, then if the homology groups of X are finitely generated, then Hom(Hn(X),Z)
is isomorphic to the free abelian part of Hn(X) (which is isomorphic to Hn/Tn), and
Ext(Hn−1(X),Z) is the torsion part Tn−1 of Hn−1(X), so

Hn(X; Z) ∼= (Hn/Tn) ⊕ Tn−1

is the direct sum of the free part of Hn(X) and the torsion part of Hn−1(X), so the
difference between homology and cohomology is that cohomology carries its torsion
one degree higher than homology does! With more general coefficients, the situation
becomes more involved...


