
The Cup Product: The one big difference between homology and cohomology is
that cohomology can be endowed with a “natural” product, making cohomology,
specifically ⊕nH

n(X;R) into a ring. (Any group can be given “unnatural” products,
like the product of any two elements are 0.)
In order to multiply cochains we will need to multiply their coefficients, and so do to
this right we need to use a ring for our coefficients, instead of just an abelian group.
On the other hand, most of our coefficient groups have been the additve groups of
rings, anyway. Popular choices are Z,Zn for various n (n = 2 is popular), and Q.

The basic idea is that cochains ϕ ∈ Hom(Ck(X), R), ψ ∈ Hom(C�(X), R) can be used
to build a (k + �)-cochain ϕ ∪ ψ, defined on a singular (k + �)-simplex σ : Δk+� =
[v0, . . . , vk+�] → X by

(ϕ � ψ)(σ) = ϕ(σ|[v0,... ,vk]) · ψ(σ|[vk,... ,vk+�])
where the multiplication on the right takes place in R. [Technically, these restricted
maps have the wrong domains; they aren’t the standard k- and �-simplices. But we
just pre-compose with the “obvious” maps from the standard simplices.] This cup
product will induce a product on cohomology, by the following fact:

... wait for it ...



δ(ϕ � ψ) = δϕ � ψ + (−1)kϕ � δψ .
This is essentially a routine computation. For σ : Δk+�+1 = [v0, . . . , vk+�+1] → X,
(δϕ � ψ)(σ) = δϕ(σ|[v0,... ,vk+1])ψ(σ|[vk+1,... ,vk+�+1])

= ϕ(∂σ|[v0,... ,vk+1])ψ(σ|[vk+1,... ,vk+�+1])
= ϕ(

∑k+1
i=0 (−1)iσ|[v0,... ,v̂i,... ,vk+1])ψ(σ|[vk+1,... ,vk+�+1])

=
∑k+1

i=0 (−1)iϕ(σ|[v0,... ,v̂i,... ,vk+1])ψ(σ|[vk+1,... ,vk+�+1]) = (*), while

(−1)k(ϕ � δψ)(σ) = (−1)kϕ(σ|[v0,... ,vk])δψ(σ|[vk,... ,vk+�+1])
= (−1)kϕ(σ|[v0,... ,vk])ψ(∂σ|[vk,... ,vk+�+1])
= (−1)kϕ(σ|[v0,... ,vk])ψ(

∑k+�+1
i=k (−1)i−kσ|[vk,... ,v̂i,... ,vk+�+1])

=
∑k+�+1

i=k (−1)iϕ(σ|[v0,... ,vk])ψ(σ|[vk,... ,v̂i,... ,vk+�+1]) = (**). But then

δ(ϕ � ψ)(σ) = ϕ � ψ(∂σ) = (ϕ � ψ)(
∑k+�+1

i=0 (−1)iσ|[v0,... ,v̂i,... ,vk+�+1])
=

∑k+�+1
i=0 (−1)iϕ � ψ(σ|[v0,... ,v̂i,... ,vk+�+1])

=
∑k

i=0(−1)iϕ � ψ(σ|[v0,... ,v̂i,... ,vk+�+1])+
∑k+�+1

i=k+1(−1)iϕ � ψ(σ|[v0,... ,v̂i,... ,vk+�+1])
=

∑k
i=0(−1)iϕ(σ|[v0,... ,v̂i,... ,vk+1])ψ(σ|[vk+1,... ,vk+�+1])

+
∑k+�+1

i=k+1(−1)iϕ(σ|[v0,... ,vk])ψ(σ|[vk,... ,v̂i,... ,vk+�+1])
!=

∑k+1
i=0 (−1)iϕ(σ|[v0,... ,v̂i,... ,vk+1])ψ(σ|[vk+1,... ,vk+�+1])

+
∑k+�+1

i=k (−1)iϕ(σ|[v0,... ,vk])ψ(σ|[vk,... ,v̂i,... ,vk+�+1])
= (*) + (**), since

(−1)k+1ϕ(σ|[v0,... ,... ,vk, ˆvk+1])ψ(σ|[vk+1,... ,vk+�+1])
+(−1)kϕ(σ|[v0,... ,vk])ψ(σ|[v̂k,vk+1,... ,vk+�+1]) = 0.



δ(ϕ � ψ) = δϕ � ψ + (−1)kϕ � δψ

This tells us several things. first, if ϕ and ψ are both cocycles, then δϕ = 0 and
δψ = 0, so δ(ϕ � ψ) = 0 � ψ ± ϕ ± 0 = 0 ± 0 = 0, so ϕ � ψ is also a cocycle.
therefore, the map

∪ : Ck(X;R) × C�(X;R) → Ck+�(X;R)
induces a map

Zk × Z� → Zk+� → Hk+�(X;R)
and if either ϕ = δf or ψ = δg, then, e.g., δ(f � ψ) = (δf) � ψ ± f � δψ = ϕ �
ψ+ f � 0 = ϕ � ψ (assuming that ψ ∈ Z�), and similarly δ((−1)kϕ � g) = ϕ � ψ,
so Bk × Z� ∪ Zk ×B� maps into Bk+�, and so there is an induced map

�: Hk(X;R) ×H�(X;R) → Hk+�(X;R)
which is what we call the cup product on cohomology.
This product turns H∗(X;R) = ⊕nH

n(X;R) into (what we will call a graded) ring;
it is associative and distributive since it is on the level of cochains;
(ϕ � ψ) � θ(σ) = (ϕ(σ|[v0,... ,vk])ψ(σ|[vk,... ,vk+�]))θ(σ|[vk+�,... ,vk+�+m])
= ϕ(σ|[v0,... ,vk])(ψ(σ|[vk,... ,vk+�])θ(σ|[vk+�,... ,vk+�+m])) = (ϕ � ψ) � θ(σ)
and distributivity is similar. If the coefficient ring R has an identity 1, then so does
H∗(X;R); the class [1] ∈ H0(X;R) which sends each singular 0-simplex to 1 is the
identity element.



If we were to work with the simplicial cochain complex, we could define the exact same
product, and so the restriction of singular cochains to simplical ones can be viewed
as a ring homomorphism, and so the isomorphism between singular and simplicial
cohomology is in fact a ring isomorphism. The product structure is also “natural”
with respect to the maps induced by continuous maps, so f : X → Y induces a ring
homomorphism f∗ : H∗(Y ;R) → H∗(X;R). Taking this to its logical conclusion, any
homotopy equivalence induces a ring isomorphism between the respective cohomology
rings.

The cup product is not quite commutative; the precise statement is that, if R is
commutative, for ϕ ∈ Hk(X;R) and ψ ∈ H�(X;R), then

ϕ � ψ = (−1)k�ψ � ϕ ∈ Hk+�(X;R).
We omit the proof. Such a product is, in some circles, called graded commutative.

As a sample computation of the cup product for a space, we look at the closed
orientable surfaces of genus g ≥ 1, Fg. By universal coefficients, sinceH∗(Fg; Z) is free
abelian, all Ext groups will be 0, so we haveH∗(Fg;R) ∼= R in dimensions 0 and 2, and
∼= R2g in dimension 1; all other groups are 0. So the only non-trivial cup products will
occur between 1-dimensional classes. Thinking in terms of cellular cohomology, using
the standard CW-structure on Fg as the quotient of a 2g-gon D with edges identified
in the pattern a1, b1, a1, b1, a2, b2, . . . . Identifying H1(Fg;R) ∼= Hom(H1(Fg), R) with
R2g as an assignment of elements of R to each of the standard basis elements ai, bi
of H1(Fg), the cup product ϕ � ψ can be identified with the value it assigns to the
generator [D/∂D] of H2(Fg;R). It suffices to compute the cup products among the
basis elements αi = a∗i , βj = b∗j dual to our basis for H1(Fg;R).



We didn’t actually define cup products for cellular cohomology (except through its
isomorphism with singular and simplicial cohomology), but we can see by the isomor-
phisms that simplicially, writing Fg as a Δ-complex by cutting D into 2g 2-simplices
by coning each edge to a vertex in the center of D, we have the same basis for
H1(Fg;R) and hence for H1(Fg;R), and the generator for H2(Fg;R) is the (oriented)
sum of the 2g 2-simplices formed (since these add up to D). So to compute cup
products, it suffices to determine what value of each of αi ∪αj , αi ∪βj , βi ∪αj , βi∪βj

take on these sums of simplices.
Note that on the level of cochains, we must also assign the αi, βj values on the 1-
simplices added in the interior of D. In order to be sure we are describing a cocycle,
the resulting values must sum to zero around every one of the 2-simplices. The figures
give one set of choices:
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With these in hand, the rest is just a bunch of calculations.
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αi � βi(Ai) = αi � βi([z, wi, vi]) = αi[z, wi]βi[wi, vi] = 1 · 0 = 0 ,
αi � βi(Bi) = αi � βi([z, xi, wi]) = αi[z, xi]βi[xi, wi] = 1 · −1 = −1 ,
αi � βi(Ci) = αi � βi([z, yi, xi]) = αi[z, yi]βi[yi, xi] = 0 · 0 = 0 , and
αi � βi(Di) = αi � βi([z, vi+1, yi]) = αi[z, vi+1]βi[vi+1, yi] = 0 · 1 = 0 .
All other 2-simplices have the value 0 since all of their edges are labeled 0 by both
αi and βi. So, summing, αi � βi[D] = −1.
[βi � αi = 1 follows by another computation or graded commutativity.]
Similar computations establish that
αi � αj = αi � βj = βi � αj = βi � βj = αi � αi = βi � βi = 0 for all i, j.

This shows, for example, that F2 and S2 ∨ S1 ∨ S1 ∨ S1 ∨ S1 are not homotopy
equivalent, even though they have isomorphic homology and cohomology groups (for
all coefficients!). This is because the ring structure of
H∗(S2∨S1∨S1∨S1∨S1;R) is different; all of the cup products of 1-dim’l classes are
0. [Think of the 2-sphere as ∂(3-simplex), and note that the duals of the homology
classes from the S1s can be given values 0 on the 1-simplices of the 2-sphere. Since
cup products are computed around the boundaries of the 2-simplices, they are all 0.]



The Cap Product: There is also a product which mixes cohomology and homology,
and is defined in a similar way. The cap product of a singular chain σ ∈ Cn(X;R)
and a singular cochain ϕ ∈ Ck(X;R) produces a singular chain σ � ϕ ∈ Cn−k(X;R)
defined by, letting σ : [v0, . . . , vn] → R,

σ � ϕ = ϕ(σ|[v0,... ,vk])σ|[vk,... ,vk+n]

where [vk, . . . , vk+n] is identified with the “standard” (n− k)-simplex in the obvious
way. We extend this definition to n-chains R-linearly. A very similar computation to
the one just carried out establishes that

∂(σ � ϕ) = (−1)n(∂σ � ϕ− σ � δϕ)
As before, this implies that the cap product of a cycle and a cocycle is a cycle, and
if either z is a boundary or ϕ is a coboundary then z � ϕ is a boundary, so we get
an induced map

�: Hn(X;R) ×Hk(X;R) → Hn−k(X;R)
which is R-linear in each coordinate, which we call the cap product.

The cap product is also natural with respect to continuous maps, although in an odd
way: given f : X → Y we have homomorphisms

f∗ : H∗(X;R) → H∗(Y ;R) and f∗ : H∗(Y ;R) → H∗(X;R), and
f∗([z] ∩ f∗[ϕ]) = f∗[z] ∩ [ϕ]

The proof is similar to our argument for cup products.



The two products, cup and cap, have relative versions, which we will not explore.
There is also a very concise expression relating the two products together:

If z ∈ Hn(X;R), ϕ ∈ Hk(X;R), and ψ ∈ H�(X;R), then
z � (ϕ � ψ) = (z � ϕ) � ψ ∈ Hn−k−�(X;R) .

The proof is immediate; the formula holds on the level of chains and cochains.


