
Orientations: The cap product plays an especially important role in connecting the
homology and cohomology groups of orientable manifolds. An n-manifold M is a
2nd countable, Hausdorff space with the additional property that every point x ∈ M
has an open neighborhood U homeomorphic to R

n. [Note: by this definition, Dn

is not a manifold! It is instead a “manifold with boundary”, which have their own
parallel and very similar theory.] Using excision we find that for any n-manifold M
and x ∈ M ,
Hk(M, M \ x; R) ∼= Hk(U ,U \ x; R) ∼= Hk(Rn, Rn \ 0)

∼= Hk(Dn, Dn \ 0; R) ∼= Hk(Dn, ∂Dn; R) ∼= H̃k(Dn/∂Dn; R) ∼= H̃k(Sn; R)
and so equals 0 for k �= n and R for k = n. An R-orientation on an n-manifold M
is a choice of generator (as an R-module) rx ∈ Hn(M, M \ x; R) ∼= R (called a local
R-orientation at x) for every x ∈ M , which are locally compatible: for every x ∈ M
there is a nbhd U of x and rU ∈ Hn(M, M \ U ; R) such that, for every y ∈ U , the
inclusion-induced map ι∗ : Hn(M, M \ U ; R) → Hn(M, M \ y; R) sends rU to ry.

For example, every manifold is Z2-orientable; a local Z2-orientation is a choice of the
(one and only) non-zero element of Hn(M, M \ x; Z2), and for any pair of locally
Euclidean nbhds U ⊆ U ⊆ V of x, and y ∈ U ,
Hn(M, M \ U ; Z2) ∼= Hn(V ,V \ U ; Z2) ∼= Hn(V ,V \ y; Z2) ∼= Hn(M, M \ y; Z2) ∼= Z2

where all isomorphisms are inclusion-induced, and the second assumes that U is a
ball in V , so that U \ y deformation retracts to ∂U ⊆ V , so V \ y deformation retracts
to V \ U . Consequently, the inclusion-induced isomorphism Hn(M, M \ U ; Z2) ∼=
Hn(M, M \ y; Z2) sends the non-zero element of Hn(M, M \ U ; Z2), which we define
to be rU , to the non-zero element of Hn(M, M \ y; Z2), which is ry.



As an example, the closed orientable surfaces Fg of genus g are R-orientable for every
R (hence the name...); from the LES for a pair we have

· · · → H2(Fg \ x; R) → H2(Fg; R) → H2(Fg, Fg \ x; R) → H1(Fg \ x; R) → H1(Fg; R) → · · ·
which, via universal coefficients and because Fg \ x deformation retracts to the 1-
skeleton, is

0 → R
i∗→ R → R2g j∗→ R2g .

But j∗ is an isomorphism (the 2-cell has boundary 0, so there “are” no 1-boundaries),
therefore by exactness so is i∗, so the image of a generator of H2(Fg) defines a
(compatible: the open cover is Fg) set of local orientations at each point.

The first basic fact about orientations is that what just happened is not an accident;
if Mn is R-orientable and compact, then there is a (unique!) homology class [M ] ∈
Hn(M ; R) = Hn(M, ∅; R), the orientation class of M , such that the image of [M ] in
Hn(M, M \ x; R) defines the same orientation on M (i.e., it equals rx for every x).

To prove this, start with ball neighborhoods Ux of each point as an open cover,
and take smaller ball neighborhoods Vx ⊆ Vx ⊆ Ux, with compact closures (e.g.,
the inverse image of the unit ball under a homeo h : Ux → R

n) as another open
cover. By compactness, finitely many {Vi}m

i=1 of the Vx cover M . For notational
sanity, let us write Hn(M |A) for Hn(M, M \ A; R). The isomorphisms Hn(M |Ui) ∼=
Hn(M |Vi) ∼= Hn(M, |y) ∼= R (since each subspace deformation retracts to the next
smaller one) implies that there is a unique class ri ∈ Hn(M |Vi) (the image of the
class rUi ∈ Hn(M |Ui)) which maps to each ry under inclusion (unique because we
have isos).



For notational convenience, we set Ki = Vi. We wish to show that there is a unique
class [M ] in Hn(M ; R) = Hn(M |M) which restricts to each of the ri; further re-
striction then implies that it maps to each rx, as desired. First we prove unique-
ness. Suppose there were two classes u, v restricting to each of the ri. Then their
difference, u − v = w, restricts to 0 in every Hn(M |Ki). We show by induction
that then w restricts to 0 in the groups Gj = Hn(M |K1 ∪ · · · ∪ Kj). But since
Gm = Hn(M |⋃i Ki) = Hn(M |M) = Hn(M ; R), w = 0 as desired. For the inductive
step, we use the relative Mayer-Vietoris sequence
· · · → Hn+1(M |(K1 ∪ · · · ∪ Ki) ∩ Ki+1) → Hn(M |(K1 ∪ · · · ∪ Ki) ∪ Ki+1)) →

Hn(M |K1 ∪ · · · ∪ Ki) ⊕ Hn(M |Ki+1) → Hn(M |(K1 ∪ · · · ∪ Ki) ∩ Ki+1) → · · ·
A separate induction (which we skip) establishes that Hn+1(M |K1∪· · ·∪Ki)∩Ki+1) =
Hn+1(M |(K1 ∩ Ki+1) ∪ · · · ∪ (Ki ∩ Ki+1)) = 0. So Hn(M |(K1 ∪ · · · ∪ Ki) ∪ Ki+1))
injecting into Hn(M |K1∪· · ·∪Ki)⊕Hn(M |Ki+1). But the image of w in Hn(M |(K1∪
· · ·∪Ki)∪Ki+1)) is then carried to 0 in both Hn(M |K1 ∪ · · ·∪Ki) and Hn(M |Ki+1)
by the inductive hypothesis (and initial step), so by injectivity is itself 0, establishing
the inductive step.



From uniqueness, we can go on to establish existence, again by induction. Note that
the uniqueness argument above applies more generally; for any compact set K ⊆ M
there is at most one class rK ∈ Hn(M |K) which restricts to rx ∈ Hn(M |x) for every
x ∈ K. This essentially allows us to stitch together the classes which compatibility
guarantees exist for small K to ever larger K. Formally, we just parallel the argument
above; given M = K1 ∪ · · · ∪ Km, we have classes ri ∈ Hn(M |Ki) which restrict to
the local orientations. The point is that in the relative Mayer-Vietoris sequence

Hn(M |Km−1 ∪ Km) → Hn(M |Km−1) ⊕ Hn(M |Km) → Hn(M |Km−1 ∩ Km)
the classes rm−1, rm each map to a class in Hn(M |Km−1∩Km) (under the inclusion-
induced maps) which restricts to rx for every x ∈ Km−1 ∩Km, and so by uniqueness
map to the same class. So in the Mayer-Vietoris sequence, (rm−1, rm) maps to 0, and
so is in the image of Hn(M |Km−1∪Km), so there is a class r′m−1 ∈ Hn(M |Km−1∪Km)
which restricts to r − x for every x ∈ Km−1 ∪ Km. Now replace Km−1, Km by
Km−1 ∪ Km in our cover of M by compact sets, and continue (or declare victory!)
by induction, since we have a cover by fewer sets having the hypothesized classes ri;
once we reach one such set, we have K1 = M .



Given a compact, connected R-orientable n-manifold, we now have an orientation
class [M ] ∈ Hn(M ; R) which defines an orientation on M . This class plays a central
role in
Poincaré Duality: If M is a compact, connected, R-orientable n-manifold, then for
every k, the map P [ϕ] = [M ] � [ϕ] , P : Hk(M ; R) → Hn−k(M ; R) is an isomor-
phism.
We will not prove this; the proof is in many respects parallel to the one given above,
inducting on a number of “small” compact subsets whose union is M , but it formally
requires introducing a new cohomology theory, cohomology with compact supports,
which we will not take the time to explore. Instead, we will outline some of the
consequences of this result.

For a connected R-orientable compact n-manifold M , Hn(M ; R) ∼= H0(M ; R) ∼=
Hom(H0(M), R) ⊕ Ext(H−1(M), R) ∼= Hom(Z, R) ⊕ Ext(0, R) ∼= R. [Note that this
immediately implies that RP 2k is not orientable, since H2k(RP 2k = 0.] This is
really a kind of cheap consequence, though, because in proving Poincaré duality, you
basically have to prove this first...
For a connected Z-orientable compact manifold M , Hn−1(M ; Z) ∼= H1(M ; Z) ∼=
Hom(H1(M), Z)⊕Ext(H0(M), Z) ∼= Hom(H1(M), Z)⊕Ext(Z, Z) = Hom(H1(M), Z)
= the torsion-free part of H1(M), so Hn−1M) is, in particular, torsion-free. [Note that
this also immediately implies that RP 2k is not orientable, since H2k−1(RP 2k ∼= Z2.]



We’ve seen that the Euler characteristic can be computed using a singular chain
complex with coefficients in any (non-trivial!) field, for finite CW-complexes. Using
the (somewhat hard) fact that a compact manifold admits the structure of a finite
CW-complex, we can then use this to learn a few things about the Euler characteristics
of compact manifolds. Since Poincare duality holds for any compact manifold M when
using Z2 coefficients, we have

Hn−k(M ; Z2) ∼= Hk(M ; Z2) ∼= Hom(Hk(M), Z2) ⊕ Ext(Hk−1(M), Z2)
But we have seen that Hk(M ; Z2) ∼= Hk(M)/{2[z] : [z] ∈ Hk(M)}⊕{[z] ∈ Hk−1(M) :
2[z] = 0}, and a quick bit of algebra will show that, at least for finitely generated
abelian groups G, G/{2z : z ∈ G} ∼= Hom(G, Z2) and {z ∈ G : 2z = 0} ∼= Ext(G, Z2)
(since everybody behaves well under direct sums and these isomorphisms hold for
Z and Zn). So Hn−k(M ; Z2) ∼= Hk(M ; Z2). Consequently, when computing Euler
characteristic, for an odd-dimensional manifold, we find that (using dimension as a
Z2-vector space)
χ(M) =

∑
(−1)i dim(Hi(M ; Z2))

=
∑

i<n/2(−1)i dim(Hi(M ; Z2)) +
∑

i>n/2(−1)i dim(Hi(M ; Z2))
=

∑
i<n/2(−1)i dim(Hi(M ; Z2)) +

∑
i>n/2(−1)−i dim(Hn−i(M ; Z2))

=
∑

i<n/2(−1)i dim(Hi(M ; Z2)) −
∑

i>n/2(−1)n−i dim(Hn−i(M ; Z2))
=

∑
i<n/2(−1)i dim(Hi(M ; Z2)) −

∑
j<n/2(−1)j dim(Hj(M ; Z2))

= 0 .



So odd-dimensional compact manifolds (without boundary) M all have Euler char-
acteristic 0. χ(M) = 0 then holds no matter how we (correctly) compute it, so this
tells us something about the ranks of the Z-homology groups, as well as about the
CW-structure itself on M .


