
Math 872 Exam 1 Topics

Homotopy Theory.

Motivation: understand all continuous functions f : X → Y , since it is functions to/from
‘model’ spaces that allow us to explore a space.

E.g., paths = γ : I = [0, 1] → X . How many ‘essentially distinct’ paths are there from (−1, 0)
to (1, 0) in R2 \ {(0, 0)} ? What is inessetial? Deformations.

Two maps f, g : X → Y are homotopic if one can be deformed to the other (through continuous
maps). Formally, there is a cts map H : X × I → Y so that H(x, 0) = f(x) and H(x, 1) =
g(x) for all x ∈ X . We write: f ≃ g (via H).

Note: γx : t 7→ H(x, t) is a cts path in Y , for every x.

Notation: f : (X,A) → (Y,B) means A ⊆ X , B ⊆ Y and f(A) ⊆ B.

Two maps f, g : (X,A) → (Y,B) are homotopic rel A if H : X × I → Y also satisfies
H(a, t) = f(a) = g(a) for all a ∈ A, t ∈ I. [So, in part, f |A = g|A .]

Basic example: any two maps f, g : X → Rn are homotopic, via a straight-line homotopy:
H(x, t) = (1− t)f(x) + tg(x).

Homotopy is an equivalence relation: f ≃ f (via H(x, t) = f(x)), f ≃ g implies g ≃ f
(via K(x, t) = H(x, 1 − t)); f ≃ g and g ≃ h implies f ≃ h (via doubling the speed;
M(x, t) = H(x, 2t) for t ≤ 1/2 and = K(x, 2t− 1) for t ≥ 1/2).

This allows us to introduce a new notion of equivalence of topological spaces. X and Y are
homotopy equivalent [we write X ≃ Y ] if there are f : X → Y and g : Y → X so that
g ◦ f ≃ IdX and f ◦ g ≃ IdY .

Homotopy equivalence is an equivalence relation! Note: a homeomorphism is a homotopy
equivalence! [g ◦ f = IdX ≃ IdX ].

The homotopy viewpoint.

The basic idea is that homotopy equivalence (= ‘h.e.’) allows us to move past/around ‘unim-
portant’ differences in spaces. For example, R2 \{(0, 0)} ∼= S1×R ≃ S1×I ≃ S1 means that
maps into R2 \ {(0, 0)} ‘behave like’ maps into S1 (which we can more readily understand?).

Algebraic topology seeks to understand topological spaces through algebraic invariants. An
algebraic invariant assigns to each space X an algebraic object A(X) and to each map
f : X → Y a homomorphism A(f) : A(X) → A(Y ). If X and Y are the ‘same’, then A(X)
and A(X) will be isomorphic. Usually, ‘same’ means homeomorphic, but we will often find
that homotopy equivalent spaces will same the same invariants, due the the methods that
we use to build them.

This can be both bad and good, ‘homotopy invariance’ of a invariant means that it will not
be able to distinguish h.e. spaces that are not homeomorphic. But it also means that
when computing an algebraic invariant, we can replace a space X with Y ≃ Y , which may
streamline a computation.

A retraction of X onto A ⊆ X is a map r : X → A so that r(a) = a for all a ∈ A. [A is
a retract of X ]. A is a deformation retract of X if ι ◦ r : X → A → X is ≃ IdX [r is a
deformation retraction]. and r is a strong deformation retraction if ι ◦ r : (X,A) → (X,A)
is ≃ IdX rel A (i.e., H(a, t) = a for all a ∈ A). We write X ց A.
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For example, r : Rn ց {~0}, since ι ◦ r ≃ IdRn via a straight-line homotopy
H(x, t) = (1− t)ι ◦ r(~x) + tIdRn(~x) = t~x .

A space X is contractible if X ≃ {∗}.

Mapping cylinders: If f : X → Y , then Mf = X × I
∐

Y/ ∼, where (x, 1) ∼ f(x). [Idea: we
glue X × {1} to Y using f .] Then since X × I ց X × {1}, we have Mf ց Y .

Fact: f : X → Y is a homotopy equivalence ⇔ Mf ց X × {0}. This means that X ≃ Y ⇔
there is a space Z with X, Y ⊆ Z and Z ց X , Z ց Y .

The Fundamental Group.

Idea: find the essentially distinct paths between points in X . How? Turn this into a group!
How? The concatenation γ ∗ η of two paths is a path. But: only if the first ends where the
second begins (so that, by the Pasting Lemma, the resulting map is cts). So we either have
a partial multiplication (= groupoid!), or we focus on loops γ : (I, ∂I) → (X, x0) based at a
fixed point x0 9we’ll do the second).

Elements of the fundamental group π1(X, x0) ‘are’ loops; the inverse will be the reverse γ(t) =
γ(1 − t), since γ ∗ γ ≃ cx0

, and the identity element will be the constant map cx0
. But! to

make γ ∗ γ equal cx0
, we need to work with homotopy classes of loops. So elements really

are equivalence classes [γ] of loops, under ≃ rel ∂I.

Then by building homotopies (mostly working on the domain I, i.e., building K = γ ◦ H :
I× I → I → X) we can see that [γ][η] = [γ ∗η] is well defined, [γ]−1 = [γ] is the inverse, and
([γ][η])[ω] = [γ]([η][ω]), so under ∗, π1(X, x0) is a group. [Most of the proofs that needed
maps (like (γ ∗ η) ∗ω and γ ∗ (η ∗ω) (which are the same concatenations, except at 4,4, and
2 times speed, versus 2,4, and 4 times speed) are homotopic can be given ‘picture’ proofs, in
addition to explicit analytic formulas.

Given a map f : (X, x0) → (Y, y0), we get an induced map f∗ : π1(X, x0) → π1(Y, y0) via
f∗[γ] = [f ◦ γ]. This is well-defined, and a homomorphism.

Basic computations: π1({∗}, ∗) = {1}, as are π1(R
n,~0) and π1([0, 1]

n, x0) for any x0. More
generally, any contractible space has trivial fundamental group.

Since (f ◦ g)∗ = f∗ ◦ g∗, and (IdX)∗ = Idπ1(X,x0), then X ∼= Y via f implies f∗ : π1(X, x0) →
π1(Y, f(x0)) is an isomorphism.

More generally, if f : X → Y is a h.e., then f∗ is an isomorphism, but, because of basepoint
issues, the inverse of f∗ is generally not g∗ for g a homotopy inverse. Th is is because under
a homotopy H : X × I → X of g ◦ f to Id, the basepoint x0 traces out a path η from
g(f(x0)) = x1 to x0, and [g ◦ f ◦ γ] = [η ∗ γ ∗ η]. This map [γ] 7→ [η ∗ γ ∗ η] from π1(X, x0)
to π1(X, x1) is a change of basepoint isomorphism, which we might call η∗ ? The fact that
homotopies can drag basepoints around will be a theme we will return to many times moving
forward.

If X is path connected, then, up to isomorphism, π1(X, x0) is independent of x0 (we can
always find a path to effect an isomorphism), and so we will often write pi1(X), when X is
path-connected, when we only care about the abstract group.

π1(S
1, (1, 0)) ∼= Z. The main ingredients:

2



Writing S1 ⊆ C and γn(t) = e2πint is the loop traversing S1 n times counterclockwise at
uniform speed, then (1) every loop γ at (1, 0) is ≃ γn for some n.

We define w : π1(S
1, (1, 0)) → Z by w[γ] = n if [γ] = [γn]. This is well-defined: (2) if γn ≃ γm

rel endpoints, then n = m.

w is a bijective homomorphism!

The proof of (1) amounted to making a general γ progressively nicer, via homotopy. This
involved

Lebesgue Number Theorem: If (X, d) is a compact metric space and {Uα} is an open covering
of X , then there is an ǫ > 0 so that for every x ∈ X there is an α = α(x) so that we have
Nd(x, ǫ) ⊆ Uα.

Then by covering S1 by the ‘top 2/3rds’ and ‘bottom 2/3rds’ subsets and taking inverse images
under γ : (I, ∂I) → (S1, (1, 0)), the LNT will partition I into finitely many intervals each
mapping into top or bottom. Creating subpaths by restricting to each subinterval, and
inserting ‘hairs’ to points (1, 0), (−1, 0) in the intersection of top and bottom, we can then
homotope the subpaths to standard paths t 7→ e±2πit. Cancelling pairs the reverse direction
give us our ‘normal forms’ γn.

The proof of (2) amounted to using an ‘extra’ coordinate (cos t, sin t, t) to keep track of how
many times we wind around the circle. To do this correctly, we really use the map p : t 7→
(cos t, sin t, t) 7→ (cos t, sin t) and then lift paths γ : I → S1 to paths γ̃ : I → R with γ = p◦ γ̃.
This agin uses the LNT to partition I into subintervals mapping into top and bottom, and
the fact that the inverse image of top and bottom are a disjoint union of open sets mapped
homeomorphically under p to the top and bottom. [This is the evenly covered property.]

More than this, homotopies H : I × I → S1 can also be lifted; this enables us to show that
loops homotopic rel endpoints, when lifted both starting at the same point, will end at the
same point. Since γn when lifted starting at 0 will end at n, the result follows.

Applications. This single computation has many applications! First, there is no retraction
r : D2 → ∂D2. This is because if there were one, then r∗ : π1(D

2, (1, 0)) → π1(S
1, (1, 0))

would be a surjection, which is impossible.

This in turn gives the Brouwer Fixed Point Theorem: Every countinuous map f : D2 → D2

has a fixed point. For if not, we can then manufacture a retraction r : D2 → ∂D2.

Finally, we can prove the Fundamental Theorem of Algebra: Every non-constant polynomial p
has a complex root. For if not, then for large enough N the map

t 7→ f(Ne2πit) 7→ f(Ne2πit)/||f(Ne2πit)||
from I to S1 is homotopic to both c(1,0) = γ0 and γn for n = the degree of f , a contradiction.

Group presentations.

Free groups: Σ = a set; a reduced word on Σ is a (formal) product aǫ11 · · · aǫnn with ai ∈ Σ and
ǫi = ±1, and either ai 6= ai+1 or ǫi 6= −ǫi+1 for every i. (I.e., no aa−1, a−1a in the product.)

The free group F (Σ) = the set of reduced words, with multiplication = concatenation followed
by reduction; remove all possible aa−1, a−1a from the site of concatenation. Identity element
= the empty word, (aǫ11 · · · aǫnn )−1 = a−ǫn

n · · · a−ǫ1
1 . F (Σ) is generated by Σ, with no relations

among the generators other than the “obvious” ones.
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Important property of free groups: any function f : Σ → G , G a group, extends uniquely to
a homomorphism φ : F (Σ) → G.

If R ⊆ F (Σ), then < R >N = normal subgroup generated by R = {

n∏

i=1

girig
−1
i : n ∈ N0, gi ∈

F (Σ), ri ∈ R} = smallest normal subgroup containing R.
F (Σ)/ < R >N = the group with presentation < Σ|R > . Any homom ϕ : F (Σ) → G with
F (R) = {1G} induces ϕ :< Σ|R >→ G .

If G1 =< Σ1|R1 > and G2 =< Σ2|R2 >, then their free product G1∗G2 =< Σ1

∐
Σ2|R1∪R2 >

. Any pair of homoms φi : Gi → G extends uniquely to a homom φ : G1 ∗G2 → G

Gluing groups: given groups G1 =< Σ1|R1 > and G2 =< Σ2|R2 >, a group H and homomor-
phisms φ1 : H → Gi, the largest group “generated” by G1 and G2, in which φ1(h) = φ2(h)
for all h ∈ H is G1 ∗H G2 =< Σ1

∐
Σ2|R1 ∪ R2 ∪ {φ1(h)(φ2(h))

−1 : h ∈ H} > .
Important special cases : G ∗H {1} = G/ < φ(H) >N=< Σ|R ∪ φ(H) > , and G1 ∗{ 1}G2

∼=
G1 ∗G2 .

Seifert-van Kampen Theorem. If we express a topological space as the union X = X1∪X2,
then we have inclusion-induced homomorphisms

j1∗ : π1(X1) → π1(X) , j2∗ : π1(X2) → π1(X)
This in turn gives a homomorphism φ : π(X1) ∗ π1(X2) → π1(X) . Under the hypotheses
X1, X2 are open, and X1, X2, X1 ∩X2 are path-connected (choose a basepoint in X1 ∩X2

and) this homom is onto, and has kernel H =< i1∗(γ)(i2∗(γ))
−1 : γ ∈ π1(A) >

N , so we have
the Seifert - van Kampen Theorem: π1(X) ∼= π1(X1) ∗π1(A) π1(X2) .

[Why? Lebesgue number theorem! Any loop into X , using the inverse images of X1, X2 as an
open cover, can be partitioned into subloops alternately mapping into X1, X2, which makes
φ surjective. Partitioning a null homotopy, using H to change which of π(X1), π1(X2) a loop
lies in, yields the result.]

Generalization (of sorts): if X = C ∪ D closed sets, with C,D having nbhds U, V which
deformation retract to C,D (and U∩V def retracts to C∩D = A, then π1(X) ∼= π1(C)∗π1(A)

π1(D).

Applications.

Fundamental groups of graphs: Choosing a maximal tree T in a graph Γ, Γ ≃ Γ/T =a bouquet
of circles, which by SvK has fundamental gorup free on the number of loops.

Gluing on a 2-disk: If X is a topological space and f : ∂D2 → X is continuous, then we can
construct the quotient space Z = (X

∐
D2)/{x ∼ f(x) : x ∈ ∂D2}, the result of gluing D2

to X along f . Then SvK (with some delicacy choosing the basepoint), treating f as a loop
in X , gives π1(Z) ∼= π1(X) ∗Z {1} = π1(X2)/ < Z >N∼= π1(X2)/ < [f ] >N . So the effect of
gluing on a 2-disk onto a space, on the fundamental group, is to add a new relator, namely
the word represented by the attaching map (adjusting for basepoint). All of this applies
equally well to attaching several 2-disks; each adds a new relator. This in turn opens up
huge possibilities for the computation of π1(X). For example, for cell complexes (see below!),
we can inductively compute π1 by starting with the 1-skeleton, with free fundamental group,
and attaching the 2-cells one by one, which each add a relator to the presentation of π1(X) .

Knot complements X = S3 \K deformation retract onto a 2-complex which can be built from
a planar diagram of the knot. From this, a presentation for π1(X) can be built, with a
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generator for each strand of the knot diagram, and a (length 4) relator for each crossing,
expressing the relation that the overstrand conjugates one understrand at the crossing to
the other. (The particular form of the relator (xax−1 = b or x−1ax = b is determined by an
orientation for the knot.)

CW complexes: The “right” spaces to do algebraic topology on. The basic idea: CW
complexes are built inductively, by gluing disks onto lower-dimensional strata. X =

⋃
X(n),

where X(0) = a disjoint union of points, and, inductively, X(n) is built from X(n−1) by gluing
n-disks Dn

i along their boundaries. X =
⋃

X(n) is given the weak topology; that is, C ⊆ X
is closed ⇔ C ∩X(n) is closed for all n. Each disk Dn

i has a characteristic map φi : D
n
i → X

given by Dn
i → X(n−1) ∪ (

∐
Dn

i ) → X(n) ⊆ X . f : X → Y is cts ⇔ f ◦ φi : D
n
i → X → Y is

cts for all Dn
i .

A CW pair (X,A) is a CW complex X and a subcomplex A. If (X,A) is a CW pair, then X/A
admits a CW structure whose cells are [A] and the cells of X not in A. We can glue two
CW complexes X, Y along isomorphic subcomplexes A ⊆ X, Y , yielding X ∪A Y .

Perhaps the most important property of CW complexes (for algebraic topology, anyway) is the
homotopy extension property; given a CW pair (X,A), a map f : X → Y , and a homotopy
H : A × I → Y such that H|A×0 = f |A, there is a homotopy (extension) K : X × I → Y
with K|A×I = H . This is because B = X × {0} ∪ A × I is a retract of X × I; K is the
composition of this retraction and the “obvious” map from B to Y . Consequence: if (X,A)
is a CW pair and A is contractible, then X/A ≃ X .

Covering spaces: A map p : E → B is called a covering map if for every point x ∈ B, there
is a neighborhood U of x (an evenly covered neighborhood) so that p−1(U) is a disjoint union
Uα of open sets in E, each mapped homeomorphically onto U by (the restriction of) p . B
is called the base space of the covering; E is called the total space.

The disjoint union of 42 copies of a space, each mapping homeomorphically to a single copy,
is an example of a trivial covering. The famous exponential map p : R → S1 given by
t 7→ e2πit = (cos(2πt), sin(2πt)) is a covering map. We can build many finite-sheeted (every
point inverse is finite) coverings of a bouquet of two circles, by assembling n points over the
vertex, and then, on either side (the red/blue sides?), connecting the points by n (oriented)
arcs, one with one red/blue arcs going in/out of each vertex. Covering spaces of more
“interesting” graphs can be assembled similarly. Our basic theme: covering spaces of a
(suitably nice) space X have a very close relationship to π1(X, x0).

Homotopy Lifting Property: If p : X̃ → X is a covering map, H : Y × I → X is a
homotopy, H(y, 0) = f(y), and f̃ : Y → X̃ is a lift of f (i.e., p ◦ f̃ = f), then there is a

unique lift H̃ of H with H̃(y, 0) = f̃(y) .
The idea: using the Lebesgue Number Theorem, we build the homotopy a little bit at a time,
using inverse images of evenly-covered neighborhoods. In particular, applying this property
in the case Y = {∗}, we get the

Path Lifting Property: Given a covering map p : X̃ → X , a path γ : I → X with γ(0) = x0,
and a point x̃0 ∈ p−1(x0), there is a unique path γ̃ lifting γ with γ̃(0) = x̃0.

An immediate consequence: If p : (X̃, x̃0) → (X, x0) is a covering map, then the induced ho-

momorphism p∗ : π1(X̃, x̃0) → π1(X, x0) is injective. Even more, p∗(π1(X̃, x̃0))) ⊆ π1(X, x0)
is precisely the elements given by loops at x0, whose lifts to paths starting at x̃0, are loops.
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The cardinality of a point inverse p−1(y) is, by the evenly covered property, constant on (small)
open sets, so the set of points of x whose point inverses have any given cardinality is open.
Consequently, if X is connected, this number is constant over all of X , and is called the
number of sheets of the covering p : X̃ → X . If X and X̃ are path-connected, then the
number of sheets of a covering map equals the index of the subgroup H = p∗(π1(X̃, x̃0) in
G = π1(X, x0) . The idea: loops representing elements in the same coset have lifts at x̃0

which end at the same point.

The path lifting property (because π([0, 1], 0) = {1}) is actually a special case of a more general

lifting criterion: If p : (X̃, x̃0) → (X, x0) is a covering map, and f : (Y, y0) → (X, x0) is a

map, where Y is path-connected and locally path-connected, then there is a lift f̃ : (Y, y0) →

(X̃, x̃0) of f (i.e., f = p ◦ f̃) ⇔ f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)) . Furthermore, two lifts of f
which agree at a single point are equal.

Universal covering spaces: A covering space (X̃, x̃0) determines a subgroup of π1(X, x0).
Does it go the other way? A particularly important covering space to identify is one which
is simply connected. Such a covering is essentially unique: if X is locally path-connected and
has two connected, simply connected covering spaces p1 : X1 → X and p2 : X2 → X , then
there is a homeomorphism h : X1 → X2 with p2 ◦ h = p1.

Not every (locally path-connected) space X has a universal covering; a (further) necessary
condition is that X be semi-locally simply connected: every point x ∈ X has a nbhd x ∈
U ⊆ X with ι∗ : π1(U, x) → π(X, x) is trivial. Conversely, every path connected, locally path

connected, and semi-locally simply connected (S-LSC) space X has a universal covering. X̃
is the space whose points are (equivalence classes [γ] of) based paths γ : (I, 0) → (X, x0),
where two paths are equivalent if they are homotopic rel endpoints. The projection map is
p([γ]) = γ(1).

This in turn is the key to building covering spaces corresponding to any subgroup H of π1(X).
[This can, alternatively, be done by mimicking the construction above, except paths γ, η
are equivalent when [γ ∗ η] ∈ H .] The key to this is the deck transformation group (Deck-

bewegungsgruppe) of a covering space p : X̃ → X ; this is the set of all homeomorphisms

h : X̃ → X̃ such that p ◦ h = p.
By definition, these h permute each of the point inverses of p. Since h is a lift of the projection
map p, by the lifting criterion h is determined by which point in p−1(x0) it takes the basepoint

x̃0 of X̃ to. A deck transformation sending x̃0 to x̃1 exists ⇔ p∗(π1(X̃, x̃0) = p∗(π1(X̃, x̃1)
[we need one inclusion to give h, and the opposite inclusion to ensure it is a bijection].

In general, these two groups p∗(π1(X̃, x̃0), p∗(π1(X̃, x̃1) are always conjugate, by the projection

of a path from x̃0 to x̃1. Paths in X̃ from x̃0 to x̃1 are in 1-to-1 corresp with the cosets
of H = p∗(π1(X̃, x̃0) in π1(X, x0); so deck transformations are in 1-to-1 corresp with cosets
whose representatives conjugate H to itself. The set of such elements in G is called the
normalizer of H in G, and denoted NG(H) or simply N(H). The deck transformation group
is therefore isomorphic to the group N(H)/H under h 7→ the coset with representative the
projection of the path from x̃0 to h(x̃0).

Applying this to the universal covering space p : X̃ → X , in this case H = {1}, so N(H) =
π1(X, x0). So the deck transformation group is isomorphic to π1(X, x0). For example, this
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gives the quickest possible proof that π1(S
1) ∼= Z, since R is a contractible covering space,

whose deck transformations are the translations by integer distances.
Thus π1(X) acts on its universal cover as a group of homeomorphisms. And since this action
is simply transitive on point inverses [there is exactly one (that’s the simple part) deck
transformation carrying any one point in a point inverse to any other one (that’s the transitive

part)], the quotient map from X̃ to the orbits of this action is the projection map p to X .

But! Given G = π1(X, x0) and its action on a univ cover X̃ , we can, instead of modding out by

G, mod out by any subgroup H of G, to build XH = X̃/H . This is a space with π1(XH) ∼= H ,

having X̃ as univ covering. And since the quotient (covering) map pG : X̃ → X = X̃/G

factors through X̃/H , we have an induced map pH : X̃/H → X , which is a covering map.
So every subgroup of G is the fundamental group of a covering of X . Even more:

The Galois correspondence: Two coverings p1 : X1 → X , p2 : X2 → X are isomorphic if
there is a homeo h : X1 → X2 with p1 = p2 ◦h. Isomorphic coverings give, under projection,
conjugate subgroups of π1(X, x0). For a path-connected, locally path-connected, semi-locally
simply-connected space X , the image of the induced homomorphism on π1 gives a one-to-one
correspondence between [isomorphism classes of (connected) coverings of X ] and [conjugacy
classes of subgroups of π1(X)].

So, for example, if you have a group G that you are interested in, you know of a (nice enough)
space X with π1(X) ∼= G, and you know enough about the coverings of X , then you can
gain information about the subgroup structure of G.

For example, a free group F (Σ) is π1 of a bouquet of circles X . Since every covering of X is
a graph, we have: every subgroup of a free group is free. A subgroup H of index n in F (Σ)

corresponds to a n-sheeted covering X̃ of X . If |Σ| = m, then X̃ will have n vertices and
nm edges. Collapsing a maximal tree, having n − 1 edges, to a point, leaves a bouquet of
nm− n+ 1 circles, so H ∼= F (nm− n + 1).

Given a free groupG = F (a1, . . . an) and a collection of words w1, . . . wm ∈ G, we can determine
the rank and ndex of the subgroup it H they generate by building the corresponding cover.
The idea is to start with a bouquet of m circles, each subdivided and labelled to spell out the
words wi. Then we repeatedly identify edges sharing on common vertex if they are labelled
precisely the same (same letter and same orientation). This process is known as folding.
When done, we have (by adding trees if needed), constructed the covering corresponding to
< w1, . . . wm >⊆ G.

With work, this same process can be applied to subgroups of finitely presented groups (to be
certain it stops, one usually needs a priori knowledge that the subgroup has finite index). In
so doing, it yields a presentation for the subgroup!

Postscript: why care about covering spaces? The preceding discussion probably makes
it clear that covering places play a central role in (combinatorial) group theory. It also plays
a role in embedding problems; a common scenario is to have a map f : Y → X which is
injective on π1, and we wish to know if we can lift f to a finite-sheeted covering so that the
lifted map f̃ is homotopic to an embedding. Information that is easier to obtain in the case
of an embedding can then be passed down to gain information abut the original map f
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