
An extended example:

Wirtinger presentations for knot complements.

A knot K is (the image of) an embedding h : S1 →֒ R
3. Wirtinger gave a

prescription for taking a planar projection of K and producing a presentation
of π1(R

3 \ K) = π1(X). The idea: think of K as lying on the projection
plane, except near the crossings, where it arches under itself. We build a
CW-complex Y ⊆ X that X deformation retracts to. A presentation for
π1(Y ) gives us π1(X).
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To build Y , glue rectangles arching under the strands ofK to a horzontal plane
lying just above the projection plane of K. At the crossing, the rectangle is
glued to the rectngle arching under the over-strand. X deformation retracts
to Y ; the top half of R3 deformation retracts to the top plane, the parts of X
inside the tubes formed by the rectangles radially retract to the boundaries
of the tubes, and the bottom part of X vertically retracts onto Y . Formally,
we should really keep a “slab” above the plane, to give us a place to run arcs
to a fixed basepoint in the interior of the slab.

We think of Y as being built up from the slab C, by gluing on annuli Ai
∼=

S1 × I, one for each rectangle Ri glued on; the rectangle Si lying above Ri in
the bottom of the slab C is the other half of the annulus. Then we glue on
the 2-disks Dj , one for each crossing of the knot projection. A little thought
shows that there are as many annuli as disks; the annuli correspond to the
unbroken strands of the knot projetion, which each have two ends, and each



crossing is where two ends terminate (so there are two ends for every Ai and
two ends for every Dj , so there are half as many of each as there are total
number of ends). To make sure that all of our interections are path connected,
and to formally use a single basepoint in all of our computations, we join every
one of the annuli and disks to a basepoint lying in the slab by a collection of
(disjoint) paths.

Now starting with the slab (with π1 = 1), add the Ai one at a time; each
has π1 = Z, generated by a loop which travels once around the S1-direction,
and its intersection with C∪ the previously glued on annuli is the rectangle
Si, which is simply connected. So, inductively, π1(C ∪ A1 ∪ · · · ∪ Ai) ∼=
π1(C ∪ A1 ∪ · · · ∪ Ai−1) ∗ π1(Ai) ∼= F (i − 1) ∗ Z ∼= F (i) is the free group on
i letters, so, adding all n (say) of the annuli yields F (n). Then we glue on
the n 2-disks Dj ; these add n relators to the presentation 〈x1, . . . , xn|〉. To
determine the relators, choose specific generators for our π1(Ai), by orienting

the knot (choosing a direction to travel around it) and choosing the loop which
goes counter-clockwise around the annulus, when you face in the direction of
the orientation. Going around the boundary of the 2-disk Dj spells out the
word xrxsx

−1

r x−1

t or xrx
−1

s x−1

r xt reading counter-clockwise, depending on
orientations. Carrying this out for every 2-disk completes the presentation of
π1(Y ) ∼= π1(X).
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With practice, it becomes completely routine to read off a presentation for
the fundamental group of R3 \K from a projection of K. For example, from
the projection above, we have

π1(R
3 \ K) ∼= 〈x1, . . . , x8|x8x1 = x2x8, x2x7 = x8x2, x5x8 = x1x5, x1x5 =

x6x1, x3x6 = x7x3, x7x2 = x3x7, x3x2 = x2x4, x7x4 = x5x7〉


