Math 872 NOT Problem Set 10

There are no starred (*) problems; no problems are due.

- 73. Find the (reduced singular) homology groups of the Möbius band $M = [0,1] \times [0,1]/\{(0,t) \sim (1,1-t) : t \in [0,1]\}$, and compute the inclusion-induced maps $i_* : \widetilde{H}_k(\partial M) \to \widetilde{H}_k(M)$ from the bundary circle of M into M.
- 74. Use the computations from problem # 73 and the Mayer-Vietoris sequence to compute the (reduced) homology groups of the projective plane $\mathbb{R}P^2 = S^2/(x \sim -x)$, which can be viewed as the union of a Möbius band M and a 2-disk D^2 with their boundary circles glued together.
- 75. Use the computations from problem # 73 and the Mayer-Vietoris sequence to compute the (reduced) homology groups of the Klein bottle K^2 , which can be viewed as two Möbius bands with their boundary circles glued together $K^2 = M_1 \cup_{\partial M_1 = \partial M_2} M_2$.
- 76. [Hatcher, p.156, # 12] $S^1 \times S^1/[S^1 \times \{*\} \cup \{*\} \times S^1$ is homeomorphic to S^2 . Show that the quotient map $q: S^1 \times S^1 \to S^2$ induces an isomorphism on H_2 , so q is not null-homotopic. Show, conversely (using covering spaces) that any map $p: S^2 \to S^1 \times S^1$ is null-homotopic.

[The LEHS of the pair $(S^1 \times S^1, S^1 \times \{*\} \cup \{*\} \times S^1)$ will help with the first part.]

77. Show that if $A \subseteq X$ and the identity map $I: X \to X$ is homotopic to a map $f: X \to X$ with $f(X) \subseteq A$, then for every $n, H_n(A) \cong H_n(X) \oplus H_{n+1}(X, A)$.

(So A has more "holes" than X does...) [Hint: f can be written as $\iota \circ g$ where g is f with its codomain restricted to A, and $\iota : A \to X$ is inclusion. The hypothesis tells us something about $(\iota \circ g)_*...$]

- 78. Find an example of a pair of graphs Γ_1, Γ_2 , so that one is a finite sheeted covering of the other $p: \Gamma_1 \to \Gamma_2$, but the induced map on homology $p_*: H_1(\Gamma_1) \to H_1(\Gamma_2)$ is <u>not</u> injective. [Hint: it actually almost never <u>is</u> injective...]
- 79. Show that if $C = \{C_n, \partial_n\}$, C' and C'' are chain complexes, and $f, g : C \to C'$ and $h, j : C' \to C''$ are chain maps, and f and g are chain homotopic and h and j are chain homotopic, then $h \circ f$ and $j \circ g$ are chain homotopic.
- 80. Show that if X is a space with $H_k(X;\mathbb{Z}) \cong \mathbb{Z}_n$, then $H_{k+1}(X;\mathbb{Z}_n) \neq 0$.

(Hint: look at the LEHS induced by the SES of coefficient groups

$$0 \to \mathbb{Z} \stackrel{\times n}{\to} \mathbb{Z} \to \mathbb{Z}_n \to 0 .)$$