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Gluing groups: given groups G1, G2, with subgroups H1, H2 that are isomorphic H1
∼= H2, how can we

“glue” G1 and G2 together along their “common” subgroup? More generally (and with our eye on van
Kampen’s Theorem) given a group H and homomorphisms φ1 : H → Gi, we wish to build the largest
group “generated” by G1 and G2, in which φ1(h) = φ2(h) for all h ∈ H.

We can do this by starting with G1 ∗ G2 (to get the first part), and then take a quotient to insure that
φ1(h)(φ2(h))−1 = 1 for every h. Using presentations G1 =< Σ1|R1 > , G2 =< Σ2|R2 > , if we insist on
quotienting out by as little as possible to get our desired result, we can do this very succinctly as

G = (G1 ∗ G2)/ < φ1(h)(φ2(h))−1 : h ∈ H >N=< Σ1

∐
Σ2|R1 ∪ R2 ∪ {φ1(h)(φ2(h))−1 : h ∈ H} >

This group G == G1 ∗H G2 is the largest group generated by G1 and G2 in which φ1(h) = φ2(h) for
all h ∈ H, and is called the amalgamated free product or free product with amalgamation (over H) .
[Warning! Group theorists will generally use this term only if both homoms φ1, φ2 are injective. (This
insures that the natural maps of G1, G2 into G1 ∗H G2 are injective.) But we will use this term for all
φ1, φ2. (Some people use the term pushout in this more general case.)]

Important special cases : G ∗H {1} = G/ < φ(H) >N=< Σ|R ∪ φ(H) > , and G1 ∗{ 1}G2
∼= G1 ∗ G2

The relevance to π1: the Seifert-van Kampen Theorem.

If we express a topological space as the union X = X1 ∪ X2, then we have inclusion-induced homomor-
phisms

j1∗ : π1(X1) → π1(X) , j2∗ : π1(X2) → π1(X)
- to be precise, we should choose a common basepoint in A = X1∩X2. This in turn gives a homomorphism
φ : π(X1) ∗ π1(X2) → π1(X) . Under the hypotheses

X1, X2 are open, and X1, X2, X1 ∩ X2 are path-connected
we can see that this homom is onto:

Given x0 ∈ X1 ∩X2 and a loop γ : (I, ∂I) → (X, x0), we wish to show that it is homotopic rel endpoints
to a product of loops which lie alternately in X1 and X2. But {γ−1(X1), γ−1(X2)} is an open cover
of the compact metric space I, and so there is an ε > 0 (a Lebesgue number) so that every interval of
length ε in I lies in one of these two sets, i.e., maps, under γ, into either X1 or X2. If we set N = �1/ε�,
then setting ai = i/N , then we get a sequence of intervals Ji = [ai, ai+1], i = 0, . . .N − 1, each mapping
into X1 or X2. If Ji and Ji+1 both map into the same subpace, replace them in the sequence with
their union. Continuing in this fashion, reducing the number of subintervals by one each time, we will
eventually find a collection Ik, k = 1, . . .m, of intervals covering I, overlapping only on their endpoints,
which alternately map into X1 and X2. Their endpoints, therefore, all map into X1 ∩ X2. Setting
yk = γ(Ik∩Ik+1), we can, since X1∩X2 is path-connected, find a path δk : I → X1∩X2 with δk(0) = yk

and δk(1) = x0. Choosing our favorite homeomorphisms hk : I → Ik and defining ηk = γ|Ik
◦ hk, we

have that, in π1(X, x0),
[γ] = [η1 ∗ · · · ∗ ηm] = [η1 ∗ (δ1 ∗ δ1) ∗ η2 ∗ · · · ∗ ηm−1 ∗ (δm−1 ∗ δm−1) ∗ ηm]

= [η1 ∗ δ1][δ1 ∗ η2 ∗ δ2] · · · [δm−2 ∗ ηm−1 ∗ δm−1][δm−1 ∗ ηm]
We can insert the δk ∗ δk into these products because each is homotopic to the constant map, and
ηk∗(constant) is homotopic to ηk by the same sort of homotopy that established that the constant map
represents the identity in the fundamantal group.

This results in a product of loops (based at x0) which alternately lie in X1 and X2. This product can
therefore be interpreted as lying in π(X1) ∗ π1(X2), and maps, under φ, to [γ] . φ is therefore onto, and
π1(X) is isomorphic to the free product modulo the kernel of this map φ.

Loops γ : (I, ∂I) → (A, x0), can, using the inclusion-induced maps i1∗ : π1(A) → π1(X1) , i2∗ : π1(A) →
π1(X2), be thought as either in π1(X1) or π1(X2) . So the word i1∗(γ)(i2∗(γ))−1, in π(X1) ∗ π1(X2), is
set to the identity in π1(X) under φ. So these elements lie in the kernel of φ.



Seifert - van Kampen Theorem: ker(φ) =< i1∗(γ)(i2∗(γ))−1 : γ ∈ π1(A) >N , so π1(X) ∼=
π1(X1) ∗π1(A) π1(X2) .

Before we explore the proof of this, let’s see what we can do with it!

Fundamental groups of graphs: Every finite connected graph Γ has a maximal tree T , a connected
subgraph with no simple circuits. Since any tree is the union of smaller trees joined at a vertex, we
can, by induction, show that π1(T ) = {1} . In fact, if e is an outermost edge of T , then T deformation
retracts to T \ e, so, by induction, T is contractible. Consequently (Hatcher, Proposition 0.17), Γ and
the quotient space Γ/T are homotopy equivalent, and so have the same π1. But Γ/T = Γn is a bouquet
of n circles for some n. If we let U = a neighborhood of the vertex in Γn, which is contractible, then, by
singling out one petal of the bouquet, we have

Γn = (Γn−1 ∪ U) ∪ (Γ1 ∪ U) = X1 ∪ X2

with Γk ∪ U 
 (Γk ∪ U)/U ∼= Γk. And since X1 ∩ X2 = U 
 ∗, we have that
π1(Γn) ∼= π1(Γn−1) ∗1 π1(Γ1) = π1(Γn−1) ∗ Z

So, by induction, π1(Γ) ∼= π1(Γn) ∼= Z∗· · ·∗Z = F (n), the free group on n letters, where n = the number
of edges not in a maximal tree for Γ. The generators for the group consist of the edges not in the tree,
prepended and appended by paths to the basepoint.


