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Gluing groups: given groups G1, G2, with subgroups H;, Hy that are isomorphic H; = Hs, how can we
“glue” G1 and G5 together along their “common” subgroup? More generally (and with our eye on van
Kampen’s Theorem) given a group H and homomorphisms ¢ : H — G;, we wish to build the largest
group “generated” by G; and Gs, in which ¢;1(h) = ¢o(h) for all h € H.

We can do this by starting with G * G2 (to get the first part), and then take a quotient to insure that
é1(h)(d2(h))~t =1 for every h. Using presentations G; =< X1|R; > , Go =< X3|Ry > , if we insist on
quotienting out by as little as possible to get our desired result, we can do this very succinctly as

G = (Gl * GQ)/ < gbl(h)(gbg(h))_l che H >N:< X HZQ|R1 URs U {¢1(h)(¢2(h))_1 :he H} >

This group G == G g G is the largest group generated by G and Go in which ¢1(h) = ¢2(h) for
all h € H, and is called the amalgamated free product or free product with amalgamation (over H) .
[Warning! Group theorists will generally use this term only if both homoms ¢, ¢ are injective. (This
insures that the natural maps of G, Gy into G *xy G are injective.) But we will use this term for all
¢1, 2. (Some people use the term pushout in this more general case.)]

Important special cases : G*y {1} = G/ < ¢(H) >N=<Z|RU ¢(H) > , and Gy *{ 1}G> = G = Gy

The relevance to my: the Seifert-van Kampen Theorem.

If we express a topological space as the union X = X; U X5, then we have inclusion-induced homomor-
phisms
Jre (X)) = m(X) , Jaw t m(X2) — m1(X)
- to be precise, we should choose a common basepoint in A = X;NX5. This in turn gives a homomorphism
¢ m(Xy) *x 7 (X2) — 71 (X) . Under the hypotheses
X1, X9 are open, and X7, X5, X7 N Xy are path-connected
we can see that this homom is onto:

Given g € X1 N X5 and aloop v : (1,0I) — (X, xg), we wish to show that it is homotopic rel endpoints
to a product of loops which lie alternately in X; and X,. But {y1(X;),7 !(X2)} is an open cover
of the compact metric space I, and so there is an € > 0 (a Lebesque number) so that every interval of
length € in I lies in one of these two sets, i.e., maps, under ~, into either X; or Xs. If we set N = [1/¢],
then setting a; = i/N, then we get a sequence of intervals J; = [a;,a;+1],4 =0,...N — 1, each mapping
into X; or Xy. If J; and J;1; both map into the same subpace, replace them in the sequence with
their union. Continuing in this fashion, reducing the number of subintervals by one each time, we will
eventually find a collection Iy, k = 1,...m, of intervals covering I, overlapping only on their endpoints,
which alternately map into X; and Xs. Their endpoints, therefore, all map into X; N X5. Setting
yr = Y({xNIk11), we can, since X7 N X5 is path-connected, find a path §y : I — X7 N Xo with 0;(0) = yg
and 0x(1) = xo. Choosing our favorite homeomorphisms hy : I — I and defining nx = 7|1, © hi, we
have that, in 71 (X, z¢),
(Y] =l emm] = [ % (01 % 01) M % -+ 1 % (Ot * Orm—1) 7]

=_[7]1 * 51][5_1 12 % O] - -+ [Om—2 * Nm—1 % Om—1][0m—1 * T
We can insert the dx * d; into these products because each is homotopic to the constant map, and
Ni*(constant) is homotopic to 1 by the same sort of homotopy that established that the constant map

represents the identity in the fundamantal group.

This results in a product of loops (based at xg) which alternately lie in X7 and X5. This product can
therefore be interpreted as lying in 7(X7) * m1(X2), and maps, under ¢, to [y] . ¢ is therefore onto, and
m1(X) is isomorphic to the free product modulo the kernel of this map ¢.

Loops v : (I,0I) — (A, zg), can, using the inclusion-induced maps i1, : m1(A4) — 71 (X1) , i2. : T1(A) —
71(X32), be thought as either in m1(X7) or m1(X2) . So the word i1.(v)(i2«(7)) 71, in m(X7) * m1(X32), is
set to the identity in 1 (X) under ¢. So these elements lie in the kernel of ¢.



Seifert - van Kampen Theorem: ker(¢) =< i1.(7)(i2x(7))"! : v € m(A) >V, so m(X) =
7T1(X1) *ﬂ'l(A) 7T1(X2) .

Before we explore the proof of this, let’s see what we can do with it!

Fundamental groups of graphs: Every finite connected graph I' has a maximal tree T, a connected
subgraph with no simple circuits. Since any tree is the union of smaller trees joined at a vertex, we
can, by induction, show that 71 (7T) = {1} . In fact, if e is an outermost edge of T', then T" deformation
retracts to T'\ e, so, by induction, T" is contractible. Consequently (Hatcher, Proposition 0.17), I' and
the quotient space I'/T" are homotopy equivalent, and so have the same 7;. But I'/T" = T', is a bouquet
of n circles for some n. If we let Y = a neighborhood of the vertex in I',,, which is contractible, then, by
singling out one petal of the bouquet, we have

I, =T, UU)U (T UU) =X UX,
with T'y UU ~ (T'y UU) /U = T'. And since X7 N Xo = U ~ *, we have that
T (Tp) Zm(Thot) x1 m1(T1) = m (Th1) * 2
So, by induction, 1 (T') 2 71(T',,) & Zx- - -xZ = F(n), the free group on n letters, where n = the number
of edges not in a maximal tree for I'. The generators for the group consist of the edges not in the tree,
prepended and appended by paths to the basepoint.



