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We now turn our attention to proving Seifert - van Kampen; understanding the kernel of the map
φ : π1(X1) ∗ π1(X2) → π1(X) , under the hypotheses that X1, X2 are open, A = X1 ∩ X2 is path-
connected, and the basepoint x0 ∈ A . So we start with a product g = g1 · · · gn of loops alternately in
X1 and X2, which when thought of in X is null-homotopic. We wish to show that g can be expressed as
a product of conjugates of elements of the form i1∗(a)(i2∗(a))−1 (and their inverses). The basic idea is
that a “big” homotopy can be viewed as a large number of “little” homotopies, which we essentially deal
with one at a time, and we find out how little “little” is by using the same Lebesgue number agument
that we used before.

Specifically, if H is the homotopy, rel basepoint, from γ1 ∗ · · · ∗ γn, where γi is a based loop representing
gi, and the constant loop, then, as before, {H−1(X1), H−1(X2)} is an open cover of I × I, and so has a
Lebesgue number ε. If we cut I × I into subsquares, with length 1/N on a side, where 1/N < ε, then
each subsquare maps into either X1 or X2. The idea is to think of this as a collection of horizontal
strips, each cut into squares. Arguing by induction, starting from the bottom (where our conclusion will
be obvious), we will argue that if the bottom of the strip can be expressed as an element of the group
N =< i1∗(γ)(i2∗(γ))−1 : γ ∈ π1(A) >N⊆ π1(X1) ∗ π1(X2)
(i.e., as a product of conjugates of such loops), then so can the top of the strip.
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And to do this, we work as before. We have a strip of squares, each mapping into either X1 or X2. If
adjacent squares map into the same subpace, amalgamate them into a single larger rectangle. Continuing
in this way, we can break the strip into subrectangles which alternately map into X1 or X2. This means
that the vertical arcs in between map into X1 ∩ X2 = A, and represent paths ηi in A. Their endpoints
also map into A, and so can be joined by paths (δi on the top, εi on the bottom) in A to the basepoint.
The top of the strip is homotopic, rel basepoint, to
(α1 ∗ δ1) ∗ (δ1 ∗ α2 ∗ δ2) ∗ · · · ∗ (δk−1 ∗ αk)
each grouping mapping into either X1 or X2. The rectangles demonstrate that each grouping is homo-
topic, rel basepoint, to the product of loops
(δi ∗ ηi ∗ εi) ∗ (εi ∗ βi ∗ εi+1) ∗ (εi+1 ∗ ηi+1 ∗ δi+1) = aibia

−1
i+1

where this is thought of as a product in either π1(X1) or π1(X2). The point is that when strung
together, this appears to give (b1a

−1
2 )(a2b2a

−1
3 ) · · · (akbk) , with lots of cancellation, but in reality, the

terms a−1
i ai represent elements of N , since the two “cancelling” factors are thought of as living in

the different groups π1(X1), π1(X2). The remaining terms, if we delete these “cancelling” pairs, is
b1 · · · bk = β1 ∗ ε1 ∗ · · · ∗ εi ∗βi ∗ εi+1 ∗ · · · ∗ εk ∗βk, which is homotopic rel endpoints to β1 ∗ · · · ∗βk, which,
by induction, can be represented as a product which lies in N .
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So, we can obtain the element represented by the top of the strip by inserting elements of N into the
bottom, which is a word having a representation as an element of N . The final problem to overcome
is that the insertions represented by the vertical arcs might not be occuring where we want them to
be! But this doesn’t matter; inserting a word w in the middle of another uv (to get uwv) is the same
as multiplying uv by a conjugate of w; uwv = (uv)(v−1wv), so since the bottom of the strip is in N ,
and we obtain the top of the strip by inserting elements of N into the bottom, the top is represented
by a product of conjugates of elements of N , so (since N is normal) is in N . And a final final point;
the subrectangles may not have cut the bottom of the strip up into the same pieces that the inductive
hypothesis used to express the bottom as an element of N . It didn’t even cut it into loops; we added
paths at the break points to make that happen. The inductive hypothesis would have, in fact, added its
own extra paths, at possibly different points! But if we add both sets of paths, and cut the loop up into
even more pieces, then we end up with a loop, which we have expressed as a product in π1(X1) ∗π1(X2)
in two (possibly different) ways, since the two points of view will have interpreted pieces as living in
different subspaces. But when this happens, it must be because the subloop really lives in X1 ∩X2 = A.
Moving from one to the other amounts to repeatedly changing ownership between the two sets, which
in π1(X1) ∗ π1(X2) means inserting an element of N into the product (that is literally what elements of
N do). But as before, these insertions can be collected at one end as products of conjugates. So if one
of the elements is in N , the other one is, too.

Which completes the proof!


