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Postscript: why should we care? The role of the fundamental group in distinguishing spaces has
already been touched upon; if two (path-connected) spaces have non-isomorphic fundamental groups,
then the spaces are not homeomorphic, and even not homotopy equivalent. It is one of the most basic,
and in many cases the best such invariant we have in our arsenal (hence the name “fundamental”). As
we have seen with the circle, it captures the notion of how many times a loop “winds around” in a
space. And the idea of using paths to understand a space is very basic; we explore a space by mapping
familiar objects into it. (This is a theme we keep returning to in this course.) The concepts we have
introduced play a role in analysis, for instance with the notion of a path integral; the invariance of
the integral under homotopies rel endpoints is an important property, related to Green’s Theorem and
(locally) conservative vector fields. And the space of all paths in X plays an important (theoretical,
although pprobably not practical) role in what we will do next.

Covering spaces: We can motivate our next topic by looking more closely at one of our examples
above. The projective plane RP 2 has π1 = Z2 . It is also the quotient of the simply-connected space S2

by the antipodal map, which, together with the identity map, forms a group of homeomorphisms of S2

which is isomorphic to Z2. The fact that Z2 has this dual role to play in describing RP 2 is no accident;
codifying this relationship requires the notion of a covering space.

The quotient map q : S2 → RP 2 is an example of a covering map. A map p : E → B is called a
covering map if for every point x ∈ B, there is a neighborhood U of x (an evenly covered neighborhood)
so that p−1(U) is a disjoint union Uα of open sets in E, each mapped homeomorphically onto U by
(the restriction of) p . B is called the base space of the covering; E is called the total space. The
quotient map q is an example; (the image of) the complement of a great circle in S2 will be an evenly
covered neighborhood of any point it contains. The disjoint union of 43 copies of a space, each mapping
homeomorphically to a single copy, is an example of a trivial covering. As a last example, we have the
famous exponential map p : R → S1 given by t �→ e2πit = (cos(2πt), sin(2πt)). The image of any interval
(a, b) of length less than 1 will have inverse image the disjoint union of the intervals (a + n, b + n) for
n ∈ Z .

OK, maybe not the last. We can build many finite-sheeted (every point inverse is finite) coverings of a
bouquet of two circles, say, by assembling n points over the vertex, and then, on either side, connecting
the points by n (oriented) arcs, one each going in and out of each vertex. By choosing orientations on
each 1-cell of the bouquet, we can build a covering map by sending the vertices above to the vertex, and
the arcs to the one cells, homeomorphically, respecting the orientations. We can build infinite-sheeted
coverings in much the same way.
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Covering spaces of a (suitably nice) space X have a very close relationship to π1(X, x0). The basis for
this relationship is the

Homotopy Lifting Property: If p : X̃ → X is a covering map, H : Y × I → X is a homotopy,
H(y, 0) = f(y), and f̃ : Y → X̃ is a lift of f (i.e., p ◦ f̃ = f), then there is a unique lift H̃ of H with
H̃(y, 0) = f̃(y) .



The proof of this we will defer to next time, to give us sufficient time to ensure we finish it!

In particular, applying this property in the case Y = {∗}, where a homotopy H : {∗} × I → X is really
just a a path γ : I → X , we have the Path Lifting Property: “given a covering map p : X̃ → X ,
a path γ : I → X with γ(0) = x0, and a point x̃0 ∈ p−1(x0), there is a unique path γ̃ lifting γ with
γ̃(0) = x̃0 .” One of the immediate consequences of this is one of the cornerstones of covering space
theory:

If p : (X̃, x̃0) → (X, x0) is a covering map, then the induced homomorphism p∗ : π1(X̃, x̃0) → π1(X, x0)
is injective.

Proof: Suppose γ : (I, ∂I) → (X̃, x̃0) is a loop p∗([γ]) = 1 in π1(X, x0). So there is a homotopy
H : (I × I, ∂I × I) → (X, x0) between p ◦ γ and the constant path. By homotopy lifting, there is a
homotopy H̃ from γ to the lift of the constant map at x0. The vertical sides s �→ H̃(0, s), H̃(1, s) are also
lifts of the constant map, beginning from H̃(0, 0), H̃(1, 0) = γ(0) = γ(1) = x̃0, so are the constant map
at x̃0. Consequently, the lift at the bottom is the constant map at x̃0. So H̃ represents a null-homotopy
of γ, so [γ] = 1 in π1(X̃, x̃0). So π1(X̃, x̃0) = {1} .

Even more, the image p∗(π1(X̃, x̃0))) ⊆ π1(X, x0) is precisely the elements whose representatives are
loops at x0, which when lifted to paths starting at x̃0), are loops. For if γ lifts to a loop γ̃, then p◦ γ̃ = γ,
so p∗([γ̃]) = [γ] . Conversely, if p∗([γ̃]) = [γ], then γ and p ◦ γ̃ are homotopic rel endpoints, and so the
homotopy lifts to a homotopy rel endpoints between the lift of γ at x̃0, and the lift of p ◦ γ̃ at x̃0 (which
is γ̃, since γ̃(0) = x̃0 and lifts are unique). So the lift of γ is a loop, as desired.


