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The number of sheets of a covering map can also be determined from the fundamental groups:

Proposition: If X and X̃ are path-connected, then the number of sheets of a covering map equals the
index of the subgroup H = p∗(π1(X̃, x̃0) in G = π1(X, x0) .

To see this, choose loops {γα} representing representatives {gα} of each of the (right) cosets of H in G.
Then if we lift each of them to loops based at x̃0, they will have distinct endpoints; if γ̃1(1) = γ̃2(1),
then by uniqueness of lifts, γ1 ∗ γ2 lifts to γ̃1 ∗ γ̃2, so it lifts to a loop, so γ1 ∗ γ2 represents an element
of p∗(π1(X̃, x̃0), so g1 = g2. Conversely, every point in p−1(x0) is the endpoint of on of these lifts, since
we can construct a path γ̃ from x̃0 to any such point y, giving a loop γ = p ◦ γ̃ representing an element
g ∈ π1(X, x0). But then g = hgα for some h ∈ H and α, so γ is homotopic rel endpoints to η ∗ γα for
some loop η representing h. But then lifting these based at x̃0, by hmotopy lifting, γ̃ is homotopic rel
endpoints to η̃, which is a loop, followed by the lift γ̃α of γα starting at x̃0. So γ̃ and γ̃α have the same
value at 1.
Therefore, lifts of representatives of coset representatives of H in G give a 1-to-1 correspondence, given
by γ̃(1), with p−1x0. In particular, they have the same cardinality.

The path lifting property (because π([0, 1], 0) = {1}) is actually a special case of a more general lifting
criterion: If p : (X̃, x̃0) → (X, x0) is a covering map, and f : (Y, y0) → (X, x0) is a map, where Y is
path-connected and locally path-connected, then there is a lift f̃ : (Y, y0) → (X̃, x̃0) of f (i.e., f = p ◦ f̃)
⇔ f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)) . Furthermore, two lifts of f which agree at a single point are equal.

If the lift exists, then f = p ◦ f̃ implies f∗ = p∗ ◦ f̃∗, so f∗(π1(Y, y0)) = p∗(f̃∗(π1(Y, y0))) ⊆ p∗(π1(X̃, x̃0))
, as desired. Conversely, if f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)), then we wish to build the lift of f . Not wishing
to waste our work on the special case, we will use path lifting to do it! Given y ∈ Y , choose a path γ in
Y from y0 to y and use path lifting in X to lift the path f ◦ γ to a path f̃ ◦ γ with f̃ ◦ γ(0) = x̃0 . Then
define f̃(y) = f̃ ◦ γ(1) . Provided we show that this is well-defined and continuous, it is our required lift,
since (p ◦ f̃)(y) = p(f̃(y)) = p(f̃ ◦ γ(1)) = p ◦ f̃ ◦ γ)(1) = (f ◦ γ)(1) = f(γ(1)) = f(y). To show that it is
well-defined, if η is any other path from y0 to y, then γ ∗ η is a loop in Y , so f ◦ (γ ∗ η) = (f ◦ γ) ∗ (f ◦ η)
is a loop in X representing an element of f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)), and so lifts to a loop in X̃
based at x̃0. Consequently, as before, f ◦ γ and f ◦ η lift to paths starting at x̃0 with the same value at
1. So f̃ is well-defined. To show that f̃ is continuous, we use the evenly covered property of p. Given
y ∈ Y , and a neighborhood Ũ of f̃(y) in X̃, we wish to find a nbhd V of y with f̃(V) ⊆ Ũ . Choosing
an evenly covered neighborhood Uy for f(y), choose the sheet Ũy over Uy which contains f̃(y), and set
W = Ũ ∩ Ũy . This is open in X̃, and p is a homeomorphism from this set to the open set p(W) ⊆ X .
Then if we set V ′ = f−1(p(W) this is an open set containing y, and so contains a path-connected open
set V containing y. Then is for every point z ∈ V we build a path γ from y0 to z by concatenating a
path from y0 to y with a path in V from y to z, then by unique path lifting, since f(V ⊆ Uy , f ◦ γ lifts
to the concatenation of a path from x̃0 to f̃(y) and a path in Ũy from f̃(y) to f̃(z). So f̃(z) ∈ Ũ .

Because f̃ is built by lifting paths, and path lifting is unique, the last statement of the proposition
follows.

Universal covering spaces: As we shall see, a particularly important covering space to identify is
one which is simply connected. One thing we can see from the lifting crierion is that such a covering is
essentially unique:

If X is locally path-connected, and has two connected, simply connected coverings p1 : X1 → X and
p2 : X2 → X , then choosing basepoints xi, i = 0, 1, 2 , since p1∗(π1(X1, x1)) = p2∗(π1(X2, x2)) =
{1} ⊆ π1(X, x0), the lifting criterion with each projection playing the role of f in turn gives us maps
p̃1 : (X1, x1) → (X2, x2) and p̃2 : (X2, x2) → (X1, x1) with p2 ◦ p̃1 = p1 and p1 ◦ p̃2 = p2. Consequently,



p2 ◦ p̃1 ◦ p̃2 = p1 ◦ p̃2 = p2 and similarly, p1 ◦ p̃2 ◦ p̃1 = p2 ◦ p̃1 = p1. So p̃1 ◦ p̃2 : (X2, x2) →
(X2, x2), for example, is a lift of p2 to the covering map p2. But so is the identity map! By uniqueness,
therefore, p̃1 ◦ p̃2 = Id . Similarly, p̃2 ◦ p̃1 = Id. So (X1, x1) and (X2, x2) are homeomorphic. So up to
homeomorphism, a space can have only one connected, simply-connected covering space. It is known as
the universal covering of the space X .

Not every (locall path-connected) space X has a universal covering; a (further) necessary condition is
that X be semi-locally simply connected. The idea is that If p : X̃ → X is the universal cover, then
for every point x ∈ X , we have an evenly-covered neighborhood U of x. The inclusion i : U → X , by
definition, lifts to X̃ , so i∗(π1(U , x)) ⊆ p∗(π1(X̃, x̃) = {1}, so i∗ is the trivial map. Consequently, every
loop in U is null-homotopic in X . This is semi-local simple connectivity; every point has a neighborhood
whose inclusion-induced homomorphism is trivial. Not all spaces have this property; the most famous
is the Hawaiian earrings X =

⋃
n

{x ∈ R2 : ||x − (1/n, 0)|| = 1/n} . The point (0, 0) has no such

neighborhood.


