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Every subgroup of a free group is free, because it is the fundamental group of a covering of a graph, i.e., of a graph. A subgroup
H of index n in F(X) corresponds to a n-sheeted covering X of X. If |X| = m, then X will have n vertices and nm edges.
Collapsing a maximal tree, having n — 1 edges to a point, leaves a bouquet of nm — n + 1 circles, so H = F(nm —n + 1). For
example, for m = 3, index n subgroups are free on 2n + 1 generators, so every free subgroup on 4 generators has infinite index
in F'(3). Try proving that directly!

Note that for a graph I' to be a covering of another graph, with k sheets, say, the number of vertices and edges of I' must both
be a mulitple of k. This little observation can be very useful when trying to decide what graphs I' might cover!

Kurosh Subgroup Theorem: If H < Gy x Gy is a subgroup of a free product, then H is (isomorphic to) a free product of a
collection of conjugates of subgroups of G; and G5 and a free froup. The proof is to build a space by taking 2-complexes X
and X, with m1’s isomorphic to GG1, G2 and join their basepoints by an arc. The covering space of this space X corresponding
to H consists of spaces that cover X1, Xo (giving, after basepoint considerations, the conjugates) connected by a collection of
arcs (which, suitably interpreted, gives the free group).

Residually finite groups: G is said to be residually finite if for every g # 1 there is a finite group F' and a homomorphism
¢ : G — F with ¢(g) # 1 in F. This amounts to saying that g ¢ the (normal) subgroup ker(y), which amounts to saying
that a loop corresponding to g does not lift to a loop in the finite-sheeted covering space corresponding to ker(y). So residual
finiteness of a group can be verified by building coverings of a space X with m(X) = G. For example, free groups can be
shown to be residually finite in this way.

Ranks of free (sub)groups: A free group on n generators is isomorphic to a free group on m generators < n = m; this is because
the abelianizations of the two groups are Z", Z"™. The (minimal) number of generators for a free group is called its rank. Given
a free group G = F(ay,...a,) and a collection of words wy,...w,, € G, we can determine the rank and ndex of the subgroup
it H they generate by building the corresponding cover. The idea is to start with a bouquet of m circles, each subdivided and
labelled to spell out the words w;. Then we repeatedly identify edges sharing on common vertex if they are labelled precisely
the same (same letter and same orientation). This process is known as folding. One can inductively show that the (obvious)
maps from these graphs to the bouquet of n circles X,, both have image H under the induced maps on m1; since the map for
the unfolded graph factors through the one for the folded graph, the image from the folded graph can only get smaller, but
we can still spell out the same words as loops in the folded graph, so the image can also only have gotten bigger! We continue
this folding process until there is no more folding to be done; the resulting graph X is what is known (in combinatorics) as a
graph covering; the map to X,, is locally injective. If this map is a covering map, then our subgroup H has finite index (equal
to the degree of the covering) and we can compute the rank of H (and a basis!) from the folded graph. If it is not a covering
map, then the map is not locally surjective at some vertices; if we graft trees onto these vertices, we can extend the map to an
(infinite-sheeted) covering map without changing the homotopy type of the graph. H therefore has infinite index in G, and its
rank can be computed from H = m(X).



