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Perhaps the most important property of the fundamental group is that a continuouos map between spaces
induces a homomorphism between groups. (This implied, for instance, that homeomorphic spaces have
isomorphic π1). The same is true for homology groups, for essentially the same reason. Given a map
f : X → Y , there is an induced map f# : Cn(X) → Cn(Y ) defined by postcomposition; for a singular
simplex σ, f#(σ) = f ◦ σ, and we extend the map linearly. Since f ◦ (g|A) = (f ◦ g)|A (postcomposition
commutes with restriction of the domain), f# commutes with ∂ : f#(∂σ) = ∂(f#(σ)). A homomorphism
between chain complexes (i.e., a sequence of such maps, one for each chain group) which commutes with
the boundaries maps in this way, is called a chain map. A chain map, such as f#, therefore, takes
cycles to cycles, and boundaries to boundaries, and so f# : Zi(X) → Zi(Y ) (which is linear, hence a
homomorphism) induces a homomorphism f∗ : Hi(X) → Hi(Y ) by f∗[z] = [f#(z)] . Since it is defined
by composition with singular simplices, it is immediate that, for a map g : Y → Z, (g ◦ f)∗ = g∗ ◦ f∗
. And since the identity map I : X → X satisfies I# = Id, so I∗ = Id, homeomorphic spaces have
isomorphic homology groups.

Another important property of π1 is that homotopic maps give the same induced map (after correcting
for basepoints). This is also true for homology; if f ∼ g : X → Y , then f∗ = g∗ . The proof,
however, is not quite as straightforward as for homotopy. And it requires some new technology; the chain
homotopy. A chain homotopy H between the chain complexes f#, g# : C∗(X) → C∗(Y ) is a sequence of
homomorphisms Hi : Ci(X) → Ci+1(Y ) satisfying Hi−1∂i + ∂i+1Hi = f# − g# : Ci(X) → Ci(Y ) . The
existence of H implies that f∗ = g∗, since for an i-cycle z (with ∂i(z) = 0) we have
f∗[z] − g∗[z] = [f#(z) − g#(z)] = [Hi−1∂i(z) + ∂i+1Hi(z)] = [Hi−1(0) + ∂i+1(w)] = [∂i+1(w)] = 0.
And the existence of a homotopy between f and g implies the existence of a chain homotopy between
f# and g# . This is because the homotopy gives a map H : X × I → Y , which induces a map H# :
Ci+1(X × I) → Ci+1(Y ) . Then we pull, from our back pocket, a prism map P : Ci(X) → Ci+1(X × I);
the composition H# ◦P will be our chain homotopy. The prism map takes a (singular) i-simplex σ and
sends it to a sum of singular (i + 1)-simplices in X × I. and the way we define it is to take the i-simplex
∆i, and taking it to ∆i × I (i.e., a prism), and thinking of this as a sum of (i + 1)-simplices. Using
the map σ′ = σ × Id : ∆i × I → X × I restricted to each of these (i + 1)-simplices yields the prism
map. Now, there are many ways of decomposing a prism into simplices, but we need to be careful to
choose one which restricts well to each of the faces of ∆i, in order to get the chain homotopy property
we require. In the end, what this requires is that the decomposition, when restricted to any face of ∆i

(which we think of as a copy of ∆i−1), is the same as the decomposition we would have applied to a
prism over an (i − 1)-simplex. After some exploration, we are led to the following formulation.

If we write ∆n ×{0} = [v0, . . . , vn] and ∆n ×{1} = [w0, . . . , wn], then we can decompose ∆n × I as the
(n+1)-simplices [v0, . . . , vi, wi, . . . , wn]. We then define P (σ) =

∑
(−1)iσ′|[v0,... ,vi,wi,... ,wn]. A routine

calculation verifies that (∂P +P∂)(σ) = σ′|[w0,... ,wn]−σ′|[v0,...vn] ; Composing with H# yields our result.

Consequently, for example, homotopy equivalent spaces have isomporphic (reduced) homology groups;
homotopy equivalences induce isomorphisms. So all contractible spaces have trivial reduced homology
in all dimensions, since they are all homotopy to a point. If we think of a cell complex as a collection
of disks glued together, this lends some hope that we can compute their homology groups, since we can
compute the homology of the building blocks. Our next goal is to make turn this idea into action; but
we need another tool, to frame our answer in the best way possible.

Exact sequences: Most of the fundamental properties of homology groups are described in terms of
exact sequences. A sequence of homomorphisms · · · fn+1

→ An
fn

→An−1
fn−1
→ an−2 → · · · of abelian

groups is called exact if im(fn) = ker(fn−1) for every n. In most cases, we get the most mileage out of
an exact sequence when some of the groups (or more generally, som eof the maps) are trivial; 0 → A f

→B

is exact ⇔ f is injective (and the same of A receives the 0 map), and A f
→B → 0 is exact ⇔ f is surjective

(and the same if the map with domain B is the 0 map). An exact sequence 0 → A→B → C → 0 is
called a short exact sequence.


