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Relative homology: we build the singular chain complex of a pair (X, A) , i.e., of a space X and a subspace A ⊆ X . Since as abelian groups
we can think of Cn(A) as a subgroup of Cn(X) (induced by inclusion i : A → X) we can set Cn(X, A) = Cn(X)/Cn(A) . Since the boundary
map ∂n : Cn(X) → Cn−1(X) satisfies ∂n(Cn(A) ⊆ Cn−1(A) (the boundary of a map into A maps into A), we get an induced boundary map
∂n : Cn(X, A) → Cn−1(X, A) . These groups and maps (Cn(X, A), ∂n) form a chain complex, whose homology groups are the singluar relative
homology groups of the pair (X, A) . To be a cycle in relative homology, you need to have a representative z with ∂z ∈ Cn−1(A), i.e., you are
a chain with boundary in A. To be a boundary, you need z = ∂w + a for some w ∈ Cn+1(X) and a ∈ Cn(A) , i.e., you cobound a chain in A
(∂w = z − a). Note that the relative homology of the pair (X, ∅) is just the ordinary homology of X ; we aren’t modding out by anything.

The inclusion in and projection pn maps give us SESs 0 → Cn(A) → Cn(X) → Cn(X, A) → 0 and the boundary maps are essentially all
the same, so in and pn are chain maps. So we get a LES · · · → Hn(A) → Hn(X) → Hn(X, A) → Hn−1(A) → · · · We can also replace
the absolute homology groups with reduced homology groups, by augmenting the SESs with 0 → Z → Z → 0 → 0 at the bottom. There
is also a LES of a triple (X, A, B) , where by triple we mean B ⊆ A ⊆ X . From the SESs 0 → Cn(A, B) → Cn(X, B) → Cn(X, A) → 0
(i.e., 0 → Cn(A)/Cn(B) → Cn(X)/Cn(B) → Cn(X)/Cn(A) → 0 ) we get the LES · · · → Hn(A, B) → Hn(X, B) → Hn(X, A) →
Hn−1(A, B) → Hn−1(X, B) → · · · So for example if we look at the pair (Dn, ∂D

n) = (Dn, Sn−1), since the reduced homology of D
n is

trivial, every third group in our LES is 0, giving Hm(Dn, Sn−1) ∼= H̃m−1(Sn−1) for every m and n.

A basic fact is that if A sits in X “nicely enough” (think: A is a subcomplex of the cell complex X), then Hn(X, A) ∼= H̃n(X/A) . We will
shortly prove this! One nice consequence is that we can do some (non-trivial!) basic calculations: taking X = D

n and A = ∂D
n = Sn−1, we

have D
n/Sn−1 ∼= Sn , and the previous two facts combine to give H̃m(Sn) ∼= H̃m−1(Sn−1) for every m and n . By induction (since we know

that values of H̃m−n(S0), we find that H̃n(Sn) ∼= Z and all other homology groups are 0. And this, in turn, let’s us prove the
Brouwer Fixed Point Theorem: For every n, every map f : D

n → D
n has a fixed point.

Proof: If f(x) �= x for every x, then is with the n = 2 case that you may have seen before, we can construct a retraction r : D
n → ∂D

n = Sn−1

by setting r(x) = the (first) point past f(x) where the ray from f(x) to x meets ∂D
n . This function is continuous, and is the identity on the

boundary. So from our of your problem sets, the inclusion-induced map i∗ : Hn−1(Sn) → Hn−1(Dn) is injective. But this is impossible, since
the first group is Z and the second is 0 .

Another source of SESs is homology with coefficients. In ordinary (singular) homology, our chains are formal linear combinations of singular
simplices, with coeffs in Z. But all we needed about Z was that we can add and take negatives. So, any abelian group G will work. If we define
singular chains with coeffs in G to be formal linear combinations

∑
giσ

n
i , then since the boundary map is computed simplex by simplex, we

can define ∂(gσ) =
∑

(−1)igσ|∆n−1
i

) , essentially as before, and get a new chain complex C∗(X ; G) . It’s homology groups (cycles/boundaries)
is the homology of X with coefficients in G, H∗(X ; G) . We can also define relative homology groups H∗(X, A; G) in exactly the same way as
before. From this perspective, our original homology groups Hn(X) should be called Hn(X ; Z). And the point, in the context of our present
discussion, is that a SES of coefficient groups, 0 → K → G → H → 0 induces a SES of chain groups 0 → Cn(X ; K) → Cn(X ; G) →
Cn(X ; H) → 0 , giving us a LES · · · → Hn+1(X ; H) → Hn(X ; K) → Hn(X ; G) → Hn(X ; H) → Hn−1(X, K) → · · ·
So for example, the short exact sequence 0 → Z → Z → Zn → 0 , where the first map is multiplication by n, and the second is reduction
mod n, is exact, and gives us a long exact sequence involving ordinary homology and homology mod n . Everything we have done with
homology so far goes through with coefficients, essentially with the identical proof; foi example, homotopy equivalent spaces have isomorphic
homology with coefficients, and homotopic maps induce the same maps on homology.


