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In the end, the big result that allows us to get our homology machine really running is what is known
as excision. To motivate it, let’s try to imagine that we are trying to generalize Seifert - van Kampen.
We start with X = A ∪B, and we want to try to express the homology of X in terms of that of A, B,
and A ∩ B. With our new-found tool of long exact homology sequences, we might try to first build a
short exact sequence out of the chain complexes C∗(A ∩ B), C∗(A), C∗(B), and C∗(X). If we take our
cue from the proof of S-vK, we might think of chains in X as sums of chains in A and B, except that
we mod out by chains in A ∩B. Putting this into action, we might try the sequence

0 → Cn(A ∩B) → Cn(A)⊕ Cn(B) → Cn(X)→ 0
where jn : Cn(A) ⊕ Cn(B) → Cn(X) is defined as jn(a, b) = a + b . In order to get exactness at the
middle term (i.e., image = the kernel of this map, which is {(x,−x) : x ∈ Cn(A) ∩ Cn(B)}), we set
in : Cn(A ∩ B) → Cn(A) ⊕ Cn(B) to be in(x) = (x,−x) , since Cn(A ∩ B) = Cn(A) ∩ Cn(B) ! in is
then injective, and we certainly have that this sequence is exact at the middle term. But, in general, jn
is far from surjective! The image of jn is the set of n-chains that can be expressed as sums of chains in
A and B. Which of course not every chain in X can be; singular simplices in X need not map entirely
into either A or B.

We can solve this by replacing Cn(X) with the image of jn, calling it, say, C{A,B}
n (X) ... [Note: these

groups would form a chain complex!] Then we have a short exact sequence, and hence a long exact
homology sequence. But it involves a “new” homology group H

{A,B}
n (X) . The point is that, like S-vK,

under the right conditions, this new homology is the same as Hn(X) !

Starting from scratch, the idea is that, starting with an open cover {Uα} of X (or, more generally, with
a collections of subspaces Aα whose interiors Uα cover X), we build the chain groups subordinate to the
cover CU

n (X) = {∑aiσ
n
i : σi : n : ∆n → X, σn

i (∆
n) ⊆ Uα for some α} ⊆ Cn(X) . Since the face of

any simplex mapping into Uα also maps into Uα, our ordinary boundary maps induce boundary maps
on these groups, turning (CU

n (X), ∂n) into a chain complex. Our main result is that the inclusion i of
these groups into Cn(X) induces an isomophism on homology. And to show this, we (could) once again
use the notion of a chain homotopy.

Theorem: There is a chain map b : Cn(X) → CU
n (X) so that i ◦ b and b ◦ i are both chain homotopic

to the identity. i consequently induces isomorphisms on homology.

But we won’t prove it quite that way! Another approach is to use the short exact sequence of chain
complexes

0 → CU
n (X) i→Cn(X)→ Cn(X)/CU

n (X)→ 0
to build a long exact homology sequence. Every third group isHn(C∗(X)/CU

∗ (X)) ; if we show that these
groups are 0, then i∗ will be an isomorphism. And to show this, working back through the definition of
homology classes in Hn(C∗(X)/CU

∗ (X)), we need to show that if z ∈ Cn(X) with ∂z ∈ CU
n−1(X) (i.e., z

is a relative cycle), then there is a w ∈ Cn+1(X) with z − ∂w ∈ CU
n (X) (i.e., z is a relative boundary).

In words, if z has boundary a sum of small simplices, then there is a chain z′ made of small simplices so
that z − z′ is a boundary.
And the key to building z′ and w is a process known as barycentric subdivision. The idea is really the
same as for S-vK; we cut our singular simplices up into tiny enough pieces so that (via the Lebesgue
number theorem) each piece maps into some Uα . Unlike S-vK, though, we want to do this in a more
structured way, so that the cutting up process is “compatible” with our boundary maps. And the
best way to describe this cutting up is through barycentric coordinates. Recall that an n-simplex is
the set of convex linar combinations

∑
xivi with xi ≥ 0 and

∑
xi = 1 . The map which sends an

n-simplex to the n-simplex ∆n is literally the map
∑

xivi 
→ (x0, . . . , xn) . These are the barycentric
coordinates of an n-simplex. Since, formally, all singular simplices are considered to have ∆n for their
domain, we can describe barycentric subdivision by describing how to cut up ∆n. The idea is to build



a process the is compatible with the boundary map, so that the subdivision, when restricted to a
sub-simplex, is the subdivision of that sub-simplex. A 1-simplex [v0, v1] is subdivided by adding the
barycenter w = (v + 0 + v1)/2 as a vertex, cutting [v0, v1] into two 1-simplices ,[v0, w],[w, v1] . A 2-
simplex [v0, v1, v2] will, to be compatible withe boundary map, have its boundary cutinto 6 1-simplices;
using the barycenter (v0 + v1 + v2)/3 we can cone off each of these 1-simplices to subdivide [v0, v1, v2]
into 6 2-simplices. Taking the cue that 2 = (1 + 1)! , 6 = (2 + 1)! is probably no accident, we might
expect that an n-simplex will be cut into (n+1)! n-simplices. Note that this is thew number of ways of
ordering the vertices of our simplex. And following the “pattern” of our two test cases, where each new
simplex was the convex span of vertices chosen as (vertex) , (barycenter of a 1-simplex having (vertex)
as a vertex), (barycenter of a 2-simplex containing the previous 2 vertices), etc., we are led to the idea
that the barycentric subdivision of an n-simplex [v0, . . . , vn] is the (n+ 1)! n-simplices,

[vα(0), (vα(0) + vα(1))/2, (vα(0) + vα(1) + vα(2))/3, . . . , (vα(0) + · · ·vα(n))/(n+ 1)]
one for every permutation α of {0, . . . , n} . And since we want to take into account orientations as well,
the natural thing to do is to define the barycentric subdivision of a singular n-simplex σ : [v0, . . . , vn] →
X to be

S(σ) =
∑

α

sgn(α)σ|[vα(0),(vα(0)+vα(1))/2,(vα(0)+vα(1)+vα(2))/3,... ,(vα(0)+···vα(n))/(n+1)]

where the sum is taken over all permutations of {0, . . . , n} . This (extending linearly over the chain
group) is the subdivision operator, S : Cn(X) → Cn(X) . A “routine” calculation establishes that
∂S = S∂ , i.e., it is a chain map (i.e., it behaves well on the boundary of our simplices). The point to this
operator is that all of the subsimplices in the sum are a definite factor smaller than the original simplex.
In fact, if the diameter of [v0, . . . , vn] is d (the largest distance between points, which will, because it is
the convex span of the vertices, be the largest distance between vertices), then every individual simplex
in S(σ) will have diameter at most nd/(n+1) (the result of a little Euclidean geometry and induction).
So by repeatedly applying the subdivision operator S to a singular simplex, we will obtain a singular
chain Sk(σ), which is “really” σ written as a sum of tiny simplices, whose singular simplices have image
as small as we want. Or put more succinctly, if {Uα} is an open cover of X and σ : ∆n → X is a singular
n-simplex, then choosing a Lebesgue number ε for the open cover σ−1(Uα) of the compact metric space
∆n, and choosing a k with d(n/(n+ 1))k < ε, we find that Sk(σ) is a sum of singular simplices each of
which maps into one of the Uα, i.e., Sk(σ) ∈ CU

n (X).

In the end, we will choose our needed “small” cycle to be z′ = Skz. and to show that their difference
is a boundary, we will build a chain homotopy between Id and Sk. And to do that, we define a map
R : Cn(X)→ Cn+1(X×I); when followed by the projection-induced map p# : Cn+1(X×I) → Cn+1(X),
we get a map T : Cn(X) → Cn+1(X), and show that ∂T + T∂ = I − S . Then we set H =

∑
TSj ,

where the sum is taken over j = 0, . . . k − 1. Once we define T (!) , we will have ∂Hk + Hk∂ =∑
∂TSj + TSj∂ =

∑
(∂T + T∂)Sj =

∑
(Sj − Sj+1) = I − Sk (since the last sum telescopes). And

defining R, is, formally, just another particular sum. Setting up some notation, thinking of ∆n × I ,
as before, as having vertices {v0, . . . vn} on the 0-end and {w0, . . . , wn} on the 1-end, N = {0, . . . , n},
Π(Q) = the group of permutations of Q, and σ′ = σ × I : ∆n × I → X × I), we have

R(σ) =
∑

A⊆N

∑

π∈Π(N\A)

{
(−1)|A|sgn(π)

∏

j∈N\A

(−1)j}

σ′|[vi0 ,... ,vij
,(wi0+···wij

)/(j+1),(wi0+···wij
+wπ(ij+1 )/(j+2),... ,(wi0+···wij

+wπ(ij+1)+···wπ(in))/(n+1)]

where we sum over all non-empty subsets of {0, . . . n} (with the induced ordering on vertices from the
ordering on {0, . . . , n}). Intuitively, this map “interpolates” between the simplex [v0, . . . vn] and the
barycentric subdivision on w0, . . . , wn, by taking the (signed sums of the) convex spans of simplices
on the bottom (0) and simplices on the top (1). Again, a “routine” calculation will establish that
∂T + T∂ = I − S , as desired. [At any rate, I verified it for n=1,2; the formula for the sign of each
simplex was determined by working backwards from these examples.]


