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Homology on “small” chains = singular homology: The point to all of these calculations was
that if {Uα} is an open cover of X , then the inclusions in : CU

n (X) → Cn(X) induce isomorphisms on
homology. This gives us two big theorems. The first is

Mayer-Vietoris Sequence: If X = U ∪V is the union of two open sets, then the short exact sequences
0 → Cn(U ∩ V) → Cn(U) ⊕ Cn(V) → C

{U,V}
n (X) → 0 , together with the isomorphism above, give

the long exact sequence

· · · → Hn(U ∩ V)(iU∗,−iV∗)→ Hn(U)⊕Hn(V)jU∗+jV∗→ Hn(X) ∂→Hn−1(U ∩ V) → · · ·
And just like Seifert - van Kampen, we can replace open sets by sets A,B having neigborhoods which
deformation retract to them, and whose intersection deformation retracts to A ∩ B. For example,
subcomplexes A,B ⊆ X of a CW-complex, with A ∪ B = X have homology satisfying a long exact
sequence

· · · → Hn(A ∩B)
(iA∗,−iB∗)→ Hn(A)⊕Hn(B)

jA∗+jB∗→ Hn(X) ∂→Hn−1(A ∩B) → · · ·
And this is also true for reduced homology; we just augment the chain complexes used above with the
short exact sequence 0 → Z → Z ⊕ Z → Z → 0 , where the first non-trivial map is a �→ (a,−a) and
the second is (a, b) �→ a+ b .

And now we can do some meaningful calculations! The basic idea is that if we know the homology of
the pieces A,B,A ∩ B, and something about the inclusion-induced homomorphisms in the long exact
sequence, then we can deduce information abut the homology of X . A few examples will probably
illustrate this best.

An n-sphere Sn is the union Sn+ ∪ Sn− of its upper and lower hemispheres, each of which is contractible,
and have intersection Sn+ ∩ Sn− = Sn−1

0 the equatorial (n − 1)-sphere. So Mayer-Vietoris gives us the
exact sequence

· · · → H̃k(Sn+)⊕ H̃k(Sn−) → H̃k(Sn) → H̃k−1(Sn−1
0 ) → H̃k−1(Sn+)⊕ H̃k−1(Sn−) → · · · , i.e,

0 → H̃k(Sn) → H̃k−1(Sn−1
0 ) → 0 i.e., H̃k(Sn) ∼= H̃k−1(Sn−1) for every k and n. So by induction,

H̃k(Sn) ∼= H̃k−n(S0) ∼=
{

Z, ifk=n
0, otherwise

The 2-torus T 2 = S1 × S1 can be thought of as the union of two copies of an annulus S1 × I, glued
together along their (pair of) boundary circles. The resulting long exact homology sequence

· · · → H̃2(S1 × I)⊕ H̃2(S1 × I) → H̃2(T 2) → H̃1(S1
∐

S1) → H̃1(S1 × I)⊕ H̃1(S1 × I) →
H̃1(T 2) → H̃0(S1

∐
S1) → H̃0(S1 × I)⊕ H̃0(S1 × I) → · · ·

which renders as
0 → H̃2(T 2) → Z ⊕ Z

ϕ→Z ⊕ Z → H̃1(T 2) → Z → 0
In order to determine the unknown homology groups, we need to know more about the first map
Z ⊕ Z → Z ⊕ Z. The first group has generators consisting of the generators of each of the S1 path
components of A ∩ B (represented by the singular 1-simplex wrapping exactly once around the circle),
and are each mapped to a generator for each of the S1 × I. Remembering that ϕ was chosen to be

(iA∗,−iB∗), we find that ϕ is represented by the matrix
(

1 1
−1 −1

)
, which has image spanned by

[1, 1]T and kernel spanned by [1, 1]T . By using exactness and a few Noether isomorphism theorems, we
can cut up our LES above as

0 → H̃2(T 2) → kerϕ → 0 and 0 → (Z ⊕ Z)/im ϕ → H̃1(T 2) → Z → 0
(since the first map is onto its image, and the second to last map is injective, once we mod out by its
kernel). The first implies that H̃2(T 2) ∼= Z, and the second (since our basis for the image extends to a
basis for Z

2) becomes 0 → Z → H̃1(T 2) → Z → 0 . This implies that H̃2(T 2) ∼= Z
2, because of the



Fact: if 0 → K
ϕ→G

ψ→H → 0 is exact and there is a homomorphism ρ : H → G with ψρ =Id , then
G ∼= K × H . The proof consists of defining σ : K × H → G by σ(k, h) = ϕ(k) + ρ(h). As the
sum of two homomorphisms it is a homomorphism. If σ(k, h) = ϕ(k) + ρ(h) = 0 then 0 = ψσ(k, h) =
ψϕ(k) + ψρ(h) = 0 + h = h, so 0 = σ(k, h) = ϕ(k) + ρ(h) = ϕ(k), so k − 0 by the injectivity of ϕ. So
(k, h) = (0, 0) . For surjectivity, given g ∈ G, let h = ψ(g); then ψ(g − ρh) = ψg − ψρh = h− h = 0, so
there is a k ∈ K with ϕk = g − ρh , so σ(k, h) = ϕk + ρh = g.
[This is just on of a set of results like this; in this instance we say that the short exact sequence splits or
is split exact; this existence of the map ρ is one sufficient condition.

Consequently, H̃i(T 2) = Z for i = 2, Z
2 for i = 1, and 0 for all other i (since T 2 is path-connected, and

for i ≥ 3, our LES reads → H̃i(T 2) → 0 ).

The computation for the Klein bottle K2 is similar; it can be expressed as a pair of annuli S1 × I
glued along their boundaries, but one of the gluings is by a reflection. The associated inclusion-induced
homomorphism, in exactly one case, is −Id, not Id; and so the resulting matrix, for one choice of

generators, is
(

1 1
−1 1

)
. After row and column reducton, this becomes

(
1 0
0 2

)
. This matrix has no

kernel, so, using the same cutting up process, 0 → H̃2(K2) → kerϕ → 0 and 0 → (Z ⊕ Z)/imϕ →
H̃1(K2) → Z → 0 becomes 0 → H̃2(K2) → 0 and 0 → Z2 → H̃1(K2) → Z → 0 so H̃2(K2) = 0
and H̃1(K2) ∼= bbz ⊕ Z2 . As before, all other (reduced) homology groups are 0.

For the real projective plane P 2, we can express it as a Möbius band M with a disk D glued to its
boundary. Their intersection is a circle S1. Writing the Mayer-Vietoris sequence in this situation gives

0 → H̃2(P 2) → Z → 0⊕ Z → H̃1(P 2) → 0

Again we need to know more about the middle map i∗ : H̃1(S1) → H̃1(M) in order to determine
the unknown groups. M deformation retracts to its central circle, and the generator for wtih1(∂M),
wrapping once around ∂M , is sent to a map wrapping twice around the core circle, and so represents
twice the generator of H̃1(M) . So the middle map is injective, with image 2Z . And so H̃2(P 2) = 0,
and H̃(P 2) ∼= Z/im(i∗) ∼= Z2 . All other groups, as before, are 0.


