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There is another piece of homological algebra that we will find useful ; the Five Lemma. It allows us to compare the information contained in two LESs.

Five Lemma: If we have abelian groups and maps
An

fn→ Bn
gn→ Cn

hn→ Dn
in→ En

α ↓ β ↓ γ ↓ δ ↓ ε ↓
An−1

fn−1→ Bn−1
gn−1→ Cn−1

hn−1→ Dn−1
in−1→ En−1

where the rows are exact, the squares commute, and the maps α, β, δ, ε are all isomorphisms, then γ is an isomorphism.
To show injectivity, suppose x ∈ Cn and γx = 0, then hn−1γx = δhnx = 0, so, since δ is injective, hnx = 0. So by the exactness at Cn, x = gny for some
y ∈ Bn. Then gn−1βy = γgny = γx = 0, so by exactness at Bn−1, βy = fn−1z for some z ∈ An−1. Then since α is surjective, fn−1z = αw for some w.
Then 0 = gnfnw . But βfnw = fn−1αw fn−1z = βy, so since β is injective, y = fnw . So 0 = gnfnw = gny = x. So x = 0. For surjectivity, suppose
x ∈ Cn−1. Then hn−1x ∈ Dn−1, so since δ is surjective, hn−1x = δy for some y ∈ Dn. Then εiny = in−1δy = in−1hn−1x = 0, so since ε is injective, iny = 0.
So by exactness at Dn, y = hnz for some z ∈ Cn. Then hn−1γz = δhnz = δy = hn−1x, so hn−1(γz − x) = 0, so by exactness at Cn−1, γz − x = gn−1w for
some w ∈ Bn−1. Then since β is surjective, w = βu for some u ∈ Bn. Then γgnu = gn−1βu = gn−1w = γz − x, so x = γz − γgnu = γ(z − gnu) .
The second result that this machinery gives us is what is properly known as excision: If B ⊆ A ⊆ X and clX(B) ⊆ intX(A), then for every k the
inclusion-induced map Hk(X \ B,A \ B) → Hk(X,A) is an isomorphism.
An equivalent formulation of this is that if A,B ⊆ X and intX(A)∪ intX(B) = X, then the inclusion-induced map Hk(B,A ∩ B) → Hk(X,A) is an
isomorphism. [Set B′ = X \B .] To prove the second statement, we know that the inclusion C

{A,B}
n (X) → Cn(X) induces isomorphisms on homology, as

does Cn(A) → Cn(A), so, by the five lemma, the induced map C
{A,B}
n (X)/Cn(A) → Cn(X)/Cn(A) = Cn(X,A) induces isomorphisms on homology. But

the inclusion Cn(B) → C
{A,B}
n (X) induces a map Cn(B,A ∩ B) = Cn(B)/Cn(A ∩ B) → C

{A,B}
n (X)/Cn(A) which is an isomorphism of chain groups; a

basis for C
{A,B}
n (X)/Cn(A) consists of singular simplices which map into A or B, but don’t map into A, i.e., of simplices mapping into B but not A, i.e.,

of simplices mapping into B but not A ∩ B. But this is the same as the basis for Cn(B,A ∩ B) !
With these tools, we can start making some real homology computations. First, we show that if ∅ 
= A ⊆ X is “nice enough”, then Hn(X,A) ∼= H̃n(X/A)
. The definition of nice enough, like Seifert - van Kampen, is that A is closed and has an open nbhd U that deformation retracts to A (think: A is the
subcomplex of a CW-complex X). Then using U ,X \ A as a cover of X, and U/A, (X \ A)/A as a cover of X/A, we have

H̃n(X/A)
(1)∼=Hn(X/A,A/A)

(2)∼=Hn(X/A,U/A)
(3)∼=Hn(X/A \ A/A,U/A \ A/A)

(4)∼=Hn(X \ A,U \ A)
(5)∼=Hn(X,A)

where (1),(2) follow from the LES for a pair, (3),(5) by excision, and (4) because the restriction of the map X → X/A gives a homeo of pairs.
Second, if X,Y are T1, x ∈ X and y ∈ Y each have neighborhoods U ,V which deformation retract to each point, then the one-point union Z = X ∨ Y =
(X

∐
Y )/(x = y) has H̃n(Z) ∼= H̃n(X) ⊕ H̃n(Y ); this follows from a similar sequence of isomorphisms. Setting z = the image of {x, y} in Z, we have

H̃n(Z) ∼= Hn(Z, z) ∼= Hn(Z,U∨V) ∼= Hn(Z\z,U∨V\z) ∼= Hn([X \x]
∐

[Y \y], [U \x]
∐

[V\y]) ∼= Hn(X \x,U \x)⊕Hn(Y \y,V\y) ∼= Hn(X,x)⊕Hn(Y, y) ∼=
H̃n(X) ⊕ H̃n(Y ) . By induction, we then have H̃n(∨k

i=1Xi) ∼= ⊕k
i=1H̃n(Xi)

As an application, we can compute the homology groups of the closed orientable surfaces of genus
g, Fg. We will argue by induction on g that H̃i(Fg) = Z for i = 2, Z

2g for i = 1, and 0 for all other
i. For the base case g=1 we have the 2-torus, whose homology we have computed previously. For
the inductive step, we look at the homology of the pair (Fg+1, A) depicted here; with what we have
learned above, in the LES for the pair, we will have Hi(Fg+1, A) ∼= H̃i(Fg+1/A) ∼= H̃i(Fg ∨ T 2) ∼=
H̃i(Fg)⊕ H̃i(T 2) , which we can compute, by our inductive hypothesis. And so we find that we have

A

Fg+1

Fg

2T

H̃2(A) → H̃2(Fg+1) → H̃2(Fg ⊕ H̃2(T 2) → H̃1(A) → H̃1(Fg+1) → H̃1(Fg) ⊕ H̃2(T 2) → H̃0(A)

which renders as 0 → H̃2(Fg+1) → Z
2 → Z → H̃1(Fg+1) → Z

2g+2 → 0 . The point, though is that the map H̃1(A) → H̃1(Fg+1) is the 0 map, since
the circle A is null-homologous in Fg+1; it bounds the once-punctured torus X on the right of the figure. [Formally, what we mean is that the generator of
H̃1(A), a singular 1-simplex wrapping once around A, is a boundary in C1(Fg+1); writing X as a sum of singular 2-simplices provides a demonstration.]
So we can cut our exact sequence into two pieces 0 → H̃2(Fg+1) → Z

2 → Z → 0 and 0 → H̃1(Fg+1) → Z
2g+2 → 0 The first implies that

H̃2(Fg+1) is a direct summand, with Z, for Z
2, and so is Z; the second asserts that H̃1(Fg+1) ∼= Z

2g+2, as desired. So our inductive step is proved, and
our computation follows by induction.


