

There is another piece of homological algebra that we will find useful ; the Five Lemma. It allows us to compare the information contained in two LESs.

$$\begin{array}{ccccccc}
 A_n & \xrightarrow{f_n} & B_n & \xrightarrow{g_n} & C_n & \xrightarrow{h_n} & D_n & \xrightarrow{i_n} & E_n \\
 \alpha \downarrow & & \beta \downarrow & & \gamma \downarrow & & \delta \downarrow & & \epsilon \downarrow \\
 A_{n-1} & \xrightarrow{f_{n-1}} & B_{n-1} & \xrightarrow{g_{n-1}} & C_{n-1} & \xrightarrow{h_{n-1}} & D_{n-1} & \xrightarrow{i_{n-1}} & E_{n-1}
 \end{array}$$

where the rows are exact, the squares commute, and the maps $\alpha, \beta, \delta, \epsilon$ are all isomorphisms, then γ is an isomorphism.

To show injectivity, suppose $x \in C_n$ and $\gamma x = 0$, then $h_{n-1}\gamma x = \delta h_n x = 0$, so, since δ is injective, $h_n x = 0$. So by the exactness at C_n , $x = g_n y$ for some $y \in B_n$. Then $g_{n-1}\beta y = \gamma g_n y = \gamma x = 0$, so by exactness at B_{n-1} , $\beta y = f_{n-1}z$ for some $z \in A_{n-1}$. Then since α is surjective, $f_{n-1}z = \alpha w$ for some w . Then $0 = g_n f_n w$. But $\beta f_n w = f_{n-1}\alpha w$, $f_{n-1}z = \beta y$, so since β is injective, $y = f_n w$. So $0 = g_n f_n w = g_n y = x$. So $x = 0$. For surjectivity, suppose $x \in C_{n-1}$. Then $h_{n-1}x \in D_{n-1}$, so since δ is surjective, $h_{n-1}x = \delta y$ for some $y \in D_n$. Then $\epsilon i_n y = i_{n-1}\delta y = i_{n-1}h_{n-1}x = 0$, so since ϵ is injective, $i_n y = 0$. So by exactness at D_n , $y = h_n z$ for some $z \in C_n$. Then $h_{n-1}\gamma z = \delta h_n z = \delta y = h_{n-1}x$, so $h_{n-1}(\gamma z - x) = 0$, so by exactness at C_{n-1} , $\gamma z - x = g_{n-1}w$ for some $w \in B_{n-1}$. Then since β is surjective, $w = \beta u$ for some $u \in B_n$. Then $\gamma g_n u = g_{n-1}\beta u = g_{n-1}w = \gamma z - x$, so $x = \gamma z - \gamma g_n u = \gamma(z - g_n u)$.

The second result that this machinery gives us is what is properly known as *excision*: If $B \subseteq A \subseteq X$ and $\text{cl}_X(B) \subseteq \text{int}_X(A)$, then for every k the inclusion-induced map $H_k(X \setminus B, A \setminus B) \rightarrow H_k(X, A)$ is an isomorphism.

An equivalent formulation of this is that if $A, B \subseteq X$ and $\text{int}_X(A) \cup \text{int}_X(B) = X$, then the inclusion-induced map $H_k(B, A \cap B) \rightarrow H_k(X, A)$ is an isomorphism. [Set $B' = X \setminus B$.] To prove the second statement, we know that the inclusion $C_n^{\{A, B\}}(X) \rightarrow C_n(X)$ induces isomorphisms on homology, as does $C_n(A) \rightarrow C_n(A)$, so, by the five lemma, the induced map $C_n^{\{A, B\}}(X)/C_n(A) \rightarrow C_n(X)/C_n(A) = C_n(X, A)$ induces isomorphisms on homology. But the inclusion $C_n(B) \rightarrow C_n^{\{A, B\}}(X)$ induces a map $C_n(B, A \cap B) = C_n(B)/C_n(A \cap B) \rightarrow C_n^{\{A, B\}}(X)/C_n(A)$ which is an isomorphism of chain groups; a basis for $C_n^{\{A, B\}}(X)/C_n(A)$ consists of singular simplices which map into A or B , but don't map into A , i.e., of simplices mapping into B but not A , i.e., of simplices mapping into B but not $A \cap B$. But this is the same as the basis for $C_n(B, A \cap B)$!

With these tools, we can start making some real homology computations. First, we show that if $\emptyset \neq A \subseteq X$ is “nice enough”, then $H_n(X, A) \cong \tilde{H}_n(X/A)$. The definition of nice enough, like Seifert - van Kampen, is that A is closed and has an open nbhd \mathcal{U} that deformation retracts to A (think: A is the subcomplex of a CW-complex X). Then using $\mathcal{U}, X \setminus A$ as a cover of X , and $\mathcal{U}/A, (X \setminus A)/A$ as a cover of X/A , we have

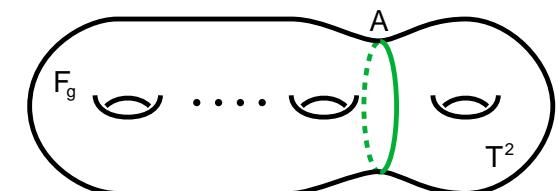
$$\tilde{H}_n(X/A) \stackrel{(1)}{\cong} H_n(X/A, A/A) \stackrel{(2)}{\cong} H_n(X/A, \mathcal{U}/A) \stackrel{(3)}{\cong} H_n(X/A \setminus A/A, \mathcal{U}/A \setminus A/A) \stackrel{(4)}{\cong} H_n(X \setminus A, \mathcal{U} \setminus A) \stackrel{(5)}{\cong} H_n(X, A)$$

where (1),(2) follow from the LES for a pair, (3),(5) by excision, and (4) because the restriction of the map $X \rightarrow X/A$ gives a homeo of pairs.

Second, if X, Y are T_1 , $x \in X$ and $y \in Y$ each have neighborhoods \mathcal{U}, \mathcal{V} which deformation retract to each point, then the one-point union $Z = X \vee Y = (X \coprod Y)/(x = y)$ has $\tilde{H}_n(Z) \cong \tilde{H}_n(X) \oplus \tilde{H}_n(Y)$; this follows from a similar sequence of isomorphisms. Setting $z =$ the image of $\{x, y\}$ in Z , we have $\tilde{H}_n(Z) \cong H_n(Z, z) \cong H_n(Z, \mathcal{U} \vee \mathcal{V}) \cong H_n(Z \setminus z, \mathcal{U} \vee \mathcal{V} \setminus z) \cong H_n([X \setminus x] \coprod [Y \setminus y], [\mathcal{U} \setminus x] \coprod [\mathcal{V} \setminus y]) \cong H_n(X \setminus x, \mathcal{U} \setminus x) \oplus H_n(Y \setminus y, \mathcal{V} \setminus y) \cong H_n(X, x) \oplus H_n(Y, y) \cong \tilde{H}_n(X) \oplus \tilde{H}_n(Y)$. By induction, we then have $\tilde{H}_n(\bigvee_{i=1}^k X_i) \cong \bigoplus_{i=1}^k \tilde{H}_n(X_i)$

As an application, we can compute the homology groups of the closed orientable surfaces of genus g, F_g . We will argue by induction on g that $\tilde{H}_i(F_g) = \mathbb{Z}$ for $i = 2$, \mathbb{Z}^{2g} for $i = 1$, and 0 for all other i . For the base case $g=1$ we have the 2-torus, whose homology we have computed previously. For the inductive step, we look at the homology of the pair (F_{g+1}, A) depicted here; with what we have learned above, in the LES for the pair, we will have $H_i(F_{g+1}, A) \cong \tilde{H}_i(F_{g+1}/A) \cong \tilde{H}_i(F_g \vee T^2) \cong \tilde{H}_i(F_g) \oplus \tilde{H}_i(T^2)$, which we can compute, by our inductive hypothesis. And so we find that we have $\tilde{H}_2(A) \rightarrow \tilde{H}_2(F_{g+1}) \rightarrow \tilde{H}_2(F_g \oplus T^2) \rightarrow \tilde{H}_1(A) \rightarrow \tilde{H}_1(F_{g+1}) \rightarrow \tilde{H}_1(F_g) \oplus \tilde{H}_2(T^2) \rightarrow \tilde{H}_0(A)$

which renders as $0 \rightarrow \tilde{H}_2(F_{g+1}) \rightarrow \mathbb{Z}^2 \rightarrow \mathbb{Z} \rightarrow \tilde{H}_1(F_{g+1}) \rightarrow \mathbb{Z}^{2g+2} \rightarrow 0$. The point, though is that the map $\tilde{H}_1(A) \rightarrow \tilde{H}_1(F_{g+1})$ is the 0 map, since the circle A is null-homologous in F_{g+1} ; it bounds the once-punctured torus X on the right of the figure. [Formally, what we mean is that the generator of $\tilde{H}_1(A)$, a singular 1-simplex wrapping once around A , is a boundary in $C_1(F_{g+1})$; writing X as a sum of singular 2-simplices provides a demonstration.] So we can cut our exact sequence into two pieces $0 \rightarrow \tilde{H}_2(F_{g+1}) \rightarrow \mathbb{Z}^2 \rightarrow \mathbb{Z} \rightarrow 0$ and $0 \rightarrow \tilde{H}_1(F_{g+1}) \rightarrow \mathbb{Z}^{2g+2} \rightarrow 0$. The first implies that $\tilde{H}_2(F_{g+1})$ is a direct summand, with \mathbb{Z} , for \mathbb{Z}^2 , and so is \mathbb{Z} ; the second asserts that $\tilde{H}_1(F_{g+1}) \cong \mathbb{Z}^{2g+2}$, as desired. So our inductive step is proved, and our computation follows by induction.



F_{g+1}

T^2