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The Hurewicz map H : 71(X) — Hy(X) induces, when X is path-connected, an isomorphism from 7y (X)/[m1(X), 71 (X)]
to H1(X) . This result can be used in two ways; knowing a (presentation for) 71 (X) allows us to compute Hy(X),
by writing the relators additively, giving H;(X) as the free abelian group on the generators, modulo the kernel
of the “presentation matrix” given by the resulting linear equations. Conversely, knowing H;(X) provides infor-
mation about 71 (X). For example, a calculation on the way to invariance of domain implied that for every knot
K in S? (i.e., the image of an embedding h : S1 — $3), H{(S®\ K) =2 bbz . This implies that the abelianization
of G = m(S%\ K) (i.e., the largest abelian quotient of G is Z. But this in turn implies that for every integer
n > 2, there is a unique surjective homomorphism Gy — Z,, since such a homomorphism must factor through
the abelianization, and there is exactly one surjective homomorphism Z — Z,, ! Consequently, there is a unique
(normal) subroup (the kernel of this homomorphism) K,, C Gk with quotient Z,, . Using the Galois correspon-
dence, there is a (unique) covering space X,, of X = S\ K corresponding to K,,, called the n-fold cyclic covering
of K . This space is determined by K and n, and so its homology groups are determined by the same data.
And even though homology cannot distinguish between two knot complements, K, K’, it might be the case that
homology can distinguish between their cyclic coverings. Consequently, if Hq(X,,) % H1(X]), then K and K’
have non-homeomorphic complement, and so represent “different” embeddings, hence different knots. In practice,
one can compute presentations for 1 (X,,) (in several different ways), and so one can compute H;(X,,), providing
an effective way to use homology to distinguish knots! This approach was ultimately formalized (by Alexander)
into a polynomial invariant of knots, known as the Alexander polynomial.

Computing the homology of the cyclic coverings can be done in several ways. The Reidemeister-Schreier method
will allow one to compute a presentation for the kernel of a homomorphism ¢ : G — H, given a presentation of
G and a transversal of the map, which is a representative of each coset of G modulo the kernel. Abelianizing
this will give homology computation. Another approach uses Seifert surfaces, orientable surfaces with 0% = K,
to cut S\ K open along. Writing S\ K = (5% \ N(X)) U N(2) allows us to use Mayer-Vietoris to compute
homology. But the cyclic covering spaces can be built by “unwinding” this view of S® \ K instead of gluing the
two ends of N(K) to the same S3\ N(X), we can take n copies of S\ N(X) and glue them together in a circle.
Mayer-Vietoris again tells us how to compute the homology of the resulting space. Details may be found on the
accompanying pages taken from Rolfsen’s “Knots and Links”.
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5. SEIFERT SURFACES

EXERCISE : The proof given above shows how to obtain a Seifert
surface from a map X » Sl defined on the complement of a link. Show
that all Seifert surfaces arise in this way. I. e., given a

Seifert surface M for Ln there exists a map F: Sn+2 - Ln > Sl

and a point x in S1 such that M = F—l(x) and moreover F

-1
o)
of a neighbourhood of x 1is a bicollar on M. [Hint: send everything

o
outside a given bicollar of M to a point].

REMARK : Recent work in topological transversality enables the above
existence theorem to go through for topological links, with suitable
additional hypotheses. That it does not work in certain cases (in

dimension four) is pointed out in recent work of Cappell and Shaneson.

CONSTRUCTION OF THE CYCLIC GOVERINGS OF A KNOT COMPLEMENT USING SEIFERT
SURFACES.

There is an important class of covering spaces of a knot
n+2 n . .
complement X = § - K, which will be used in the mext chapter to
define certain abelian invariants of K. Readers unfamiliar with covering

space theory will find a synopsis in Appendix A.
Seifert surfaces give a comvenient means of constructing these

covering spaces, in a manner entirely analogous to 'cuts' in the classical

theory of Riemann surfaces.

+
Let Mn 1 be a Seifert surface for the knot Kn in Sn+2

o +
and let N : M x (-1,1) > s 2 be an open bicollar of the interior

M=M - K, so M = NM x 0) . We denote:
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OF A KNOT COMPLEMENT USING SEIFERT SURFACES

N = NM X (-1,1))
NT = N(i X (0,1))
N = NM X (-1,0))
g - s™2 _y
« =™ ¢

L 4+ - + -
Thus we have two triples (N,N ,N ) and (Y,N,N ) . Form

+ — -
countably many coples of each, denoted (Ni’Ni’Ni) and (Yi,N;:,Ni),

{1=0, +1, +2, *++ . Let N= \U N, and = Y, be the

== =—c

disjoint unions. Finally, form an identification space by identifying

+ +
NiC Yi with Ni (= Ni via the identity homeomorphism, and likewise
identify each Ni < Yi with Ni+1C N:l.+1 . Call the resulting space X .

~

Z

'. EXERCISE. Verify the following facts. X is a path~connected open

(n+2) - manifold. There is a map p : X - X which is a regular covering
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homology of cyclic covers.

B. CALCULATION USING SEIFERT SURFACES.
An example will best illustrate the method.

,. EXAMPLE : K = trefoil in 83. Find the homology of the two-fold cyclic

cover iz of X = S3 - K.

Consider the Seifert surface M pictured

As in the previous chapter, we construct 22 from two copies Yo’ Yl of

Y = 53 - M and glue them together by No&-Nl’ each homeomorphic with

™ x (-1,1) according to the schematic
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the twofold cyclic cover of X = 53 -~ K

]
Now Hl(M) and Hl(Y) are both free abelian with respective
bases a, b and &, B as indicated in the first figure. Pushing a, b
off M and into N+ or N, we see from the picture that, in Hl(Y),

the following equations hold :

To compute Hl(iz) note that the subset Yo U Yl has homology

generators s Bo’ oy, Bl corresponding to o, B. Now putting in NO

introduces relations
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= -0 @h) (a0 = a:)
-8, =a_ -8 2 ] =b))

and adding N, introduces relations

1
- 4
Bo -a == (3) (a1 = al)
- +
-8B, =0y 8 4 (b = b,)

There is also a nontrivial 1l-cycle <y which runs once around 22 and we

have the abelian group presentation :

e

Hl(iz) (ao, eo’ ays 81, v; relations (1)-(4) )

Use (2) and (3) to eliminate a5 Bl :

e

Hl(xz) (uos BO’ Ys BO = 2@03 0‘0 = 280 )

Ne

(e v; 3a,=0)

e

Z®z/3.

;l. JUSTIFICATION OF THE CALCULATION.

It is convenient to connect the pieces by a curve T iz which

lies over a small loop in X linking K once. Let

YI

YUY UT

2
I

= No J N1 U T
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and observe that

i
>

' L
Y'Y N )

' ' + ~ + -
Y'" "N N = UNO\JNl\JN1UF

{
=
o]

Observing that Y' A N' is connected, the exact Mayer-Vietoris sequence

of reduced homology :

L= H E'NAYH > H (N') 8 H (Y') —> Hl-(fiz) —> 0

shows that Hl(i is isomorphic with the cokernel of f. The other

5)

groups in the diagram are free abelian, with bases :

+ + - - + + - -
Hl(N'(\ Y') a, bo’ a s bo’ ajs bl’ ap» bl’ Y
Hl(N') : ao, bO’ al’ bl’ y'
Hl(Y') : uO’ BO’ al’ Bl: 'Y"

where vy, v', y" are all names for the l-cycle carried by I'. Now f is
just the sum of the two inclusion-induced homomorphisms. In terms of the

bases, f 1is the map :

az — (ao, —uo) aI —> (al, —al)
bY — b, 0, -8 by — (b, ay - Bp)
a; —> (a_, By ~ o) aI - (al, B, = 9,)
b —> (b, -B;) by —> (b, -8

y — (' ¥
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6. FINITE CYCLIC COVERINGS AND TORSION INVARIANTS

The reader should check that calculation of the free abelian

group Hl(N') ® Hl(Y') of rank 10, modulo the image of f,

to the calculation in the example above.

EXERCISE : Show that for this example Hp(iz) =0, p>2.

EXERCISE : Show that for the trefoil :

gl(x3) =ze2z/2812/2 Hl(Xé) =S7262072Z
Hl(X4) =2z® z/3 Hl(X7) =z
Hl(xs) =2 Hl(XS) =78 Z/3

*
EXERCISE : Show that for the figure-eight knot,

is equivalent

Hy(X,) =2 @ 2/5

Hy(Xy) = Z @ 2/4 0 2/4

H (X)) = Z®2/382/15
EXERCISE : Show in general that Hl(ﬁk) has a Z summand.
EXERCISE : Recall the definition of connected sum of knots in 53

(section 2G ), Show that if K = K'# K" and ik’ i& and iﬁ are their

respective k-fold cyclic coverings, then

X = ' "
Hl(xk) =Z®A 6 A
where

* see Fox's Quick Trip for a longer list



