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The Hurewicz map H : π1(X) → H1(X) induces, when X is path-connected, an isomorphism from π1(X)/[π1(X), π1(X)]
to H1(X) . This result can be used in two ways; knowing a (presentation for) π1(X) allows us to compute H1(X),
by writing the relators additively, giving H1(X) as the free abelian group on the generators, modulo the kernel
of the “presentation matrix” given by the resulting linear equations. Conversely, knowing H1(X) provides infor-
mation about π1(X). For example, a calculation on the way to invariance of domain implied that for every knot
K in S3 (i.e., the image of an embedding h : S1 ↪→ S3), H1(S3 \ K) ∼= bbz . This implies that the abelianization
of GK = π1(S3 \ K) (i.e., the largest abelian quotient of GK is Z. But this in turn implies that for every integer
n ≥ 2, there is a unique surjective homomorphism GK → Zn, since such a homomorphism must factor through
the abelianization, and there is exactly one surjective homomorphism Z → Zn ! Consequently, there is a unique
(normal) subroup (the kernel of this homomorphism) Kn ⊆ GK with quotient Zn . Using the Galois correspon-
dence, there is a (unique) covering space Xn of X = S3 \K corresponding to Kn, called the n-fold cyclic covering
of K . This space is determined by K and n, and so its homology groups are determined by the same data.
And even though homology cannot distinguish between two knot complements, K, K ′, it might be the case that
homology can distinguish between their cyclic coverings. Consequently, if H1(Xn) �∼= H1(X ′

n), then K and K ′

have non-homeomorphic complement, and so represent “different” embeddings, hence different knots. In practice,
one can compute presentations for π1(Xn) (in several different ways), and so one can compute H1(Xn), providing
an effective way to use homology to distinguish knots! This approach was ultimately formalized (by Alexander)
into a polynomial invariant of knots, known as the Alexander polynomial.

Computing the homology of the cyclic coverings can be done in several ways. The Reidemeister-Schreier method
will allow one to compute a presentation for the kernel of a homomorphism ϕ : G → H, given a presentation of
G and a transversal of the map, which is a representative of each coset of G modulo the kernel. Abelianizing
this will give homology computation. Another approach uses Seifert surfaces, orientable surfaces with ∂Σ = K,
to cut S3 \ K open along. Writing S3 \ K = (S3 \ N(Σ)) ∪ N(Σ) allows us to use Mayer-Vietoris to compute
homology. But the cyclic covering spaces can be built by “unwinding” this view of S3 \ K; instead of gluing the
two ends of N(K) to the same S3 \ N(Σ), we can take n copies of S3 \ N(Σ) and glue them together in a circle.
Mayer-Vietoris again tells us how to compute the homology of the resulting space. Details may be found on the
accompanying pages taken from Rolfsen’s “Knots and Links”.
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5 . SEIFERT SURFACES

EXERCISE : The proof given above shows how to obtain a Seifert

surface from a map X - S 1 defined on the complement of a link .

	

Show

that all Seifert surfaces arise in this way . I . e ., given a

Seifert surface M for Ln there exists a map F : Sn+2 - Ln . Sl

and a point x in S1 such that M = F-1 (x) and moreover F-1
0

of a neighbourhood of x is a bicollar on M .

	

[Hint : send everything
0

outside a given bicollar of M to a point] .

REMARK : Recent work in topological transversality enables the above

existence theorem to go through for topological links, with suitable

additional hypotheses . That it does not work in certain cases (in

dimension four) is pointed out in recent work of Cappell and Shaneson .

C .

	

CONSTRUCTION OF THE CYCLIC COVERINGS OF A KNOT COMPLEMENT USING SEIFERT
SURFACES .

There is an important class of covering spaces of a knot

complement X = Sn+2 -
Kn, which will be used in the next chapter to

define certain abelian invariants of K. Readers unfamiliar with covering

space theory will find a synopsis in Appendix A.

Seifert surfaces give a convenient means Of constructing these

covering spaces, in a manner entirely analogous to 'cuts' in the classical

theory of Riemann surfaces .

Let Mn+l be a Seifert surface for the knot Kn in Sn+2

and let N : M x (-1,1) } Sn+2 be an open bicollar of the interior
0

	

o
M = M - K, so M = N(M x 0) . We denote :



y

N
N

C . CONSTRUCTION OF THE CYCLIC COVERINGS
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OF A KNOT COMPLEMENT USING SEIFERT SURFACES

N = N(M X (-1,1))

N+ = N(M X (0,1))

N = N(M X (-1,0))

Y -S
n+2

-M

X

	

- Sn+2 - K

Thus we have two triples (N,N+, N) and (Y,N+,N ) . Form

countably many copies of each, denoted (N,,N+,N-) and (Yi ,Ni,N

i = 0, ± 1, t 2, " . . Let N = U N .

disjoint unions . Finally, form an identification space by identifying

Ni C
Yi	with

	

NiC Ni	viathe identity homeomorphism, and likewise

identify each

	

Ni C Yi	with

	

Ni+lC Ni.+l '

	

Call the resulting space

	

X

and Y = U Y . be thei

EXERCISE . Verify the following facts . X is a path-connected open

(n+2) - manifold .

	

There is a map p : X -> X which is a regular covering
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6 . FINITE CYCLIC COVERINGS AND TORSION INVARIANTS

homology of cyclic covers .

CALCULATION USING SEIFERT SURFACES .

An example will best illustrate the method .

EXAMPLE : K = trefoil in S3 . Find the homology of the two-fold cyclic

cover X2 of X = S3 - K .

Consider the Seifert surface M pictured

d

As in the previous chapter, we construct X2 from two copies Yo , Y1 of

Y = S3 - M

	

and glue them together by

	

N0 9- N1 ,

	

each homeomorphic with

x (-1,1) according to the schematic



a
Now

	

H1(M)

	

and

	

H1 (Y)

	

are both free abelian with respective

bases a, b and a, S as indicated in the first figure . Pushing a, b

o
off

	

M

	

and into

	

N

	

or

	

N ,

	

we see from the picture that, in

	

H1(Y),

the following equations hold

introduces relations

B . CALCULATION USING SEIFERT SURFACES
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the twofold cyclic cover of X = S 3 - K

To compute

	

H1(X2)

	

note that the subset

	

Yo U Y1	has homology

generators ao , So, al, S1 corresponding to a, S . Now putting in No
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6 . FINITE CYCLIC COVERINGS AND TORSION INVARIANTS

and adding N1 introduces relations

Ro - ao = - al	(3) (al = al)

There is also a nontrivial 1-cycle y which runs once around X2 and we

have the abelian group presentation

- Ro = al - S1

	

(4)

	

(bl = bi)

_ (ao 1 Ro , all S1' Y ;

Use (2) and (3) to eliminate al, 81

=Z®Z/3 .

JUSTIFICATION OF THE CALCULATION .

_

	

(ao l

	

80 ~	Y ;

	

R o =

	

2ao)	a o	=

	

2Qo

	

)

_ (ao ~ Y~ Sao = 0 )

It is convenient to connect the pieces by a curve P C X2 which

lies over a small loop in X linking K once . Let

Y, = YO U Yl U P

relations (1)-(4) )



and observe that

Hl (Y' )

B . CALCULATION USING SEIFERT SURFACES
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Y' U N' = X2

Y' n N' = No V No \J Ni \J N1 U P

Observing that Y' rl N'

	

is connected, the exact Mayer-Vietoris sequence

of reduced homology

. -> H 1 (N' /1 Y')

shows that

	

H1(X2)

	

is isomorphic with the cokernel of

	

f .

	

The other

groups in the diagram are free abelian, with bases

H1 (N' (1

	

Y')

	

:

	

ao ,

	

bo ,

	

ao,

	

bo,

	

al ,

	

b1 ,

	

a1,

	

bl ,

	

Y

Hl(N')

	

ao , bo p

	

al ,

	

bl,

	

Y'

f

ao , % . al , ~l' Y~~

Hl (N') + Hl (Y') -> Hl (X2 ) -> 0

where y, y', y" are all names for the 1-cycle carried by f . Now f is

just the sum of the two inclusion-induced homomorphisms . In terms of the

bases, f is the map :

ao
-> (ao . -ao)

	

al
--y (al, -al)

bo
> (b o g ao

-
So)

	

bl > (bl 5 al
-

S1)

ao	>(ao . S1
- al )

	

al

	

-> (al . So
- ao )

bo	> (b o ,

	

(bl .

	

-Ro)

Y -> (Y" Y")
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6 . FINITE CYCLIC COVERINGS AND TORSION INVARIANTS

The reader should check that calculation of the free abelian

group H1 (N') ® H1(Y')

	

of rank 10, modulo the image of f,

	

is equivalent

to the calculation in the example above .

3. EXERCISE : Show that for this example H
p
(X2) = 0, p > 2 .

. EXERCISE : Show that for the trefoil

where

(X3 )

	

= Z ® Z/2 ® Z/2

	

H1(X6)

	

= Z ® Z @ Z

H1 (X4 )

	

a- Z 9 Z/3

	

H1 (X7)

	

= Z

H1 (X5 ) = Z

	

HI(X8) = Z ® Z/3

. EXERCISE : Show that for the figure-eight knot,

Z ® Z/5

H1(X3)

	

= Z 19 Z/4 0 Z/4

H1(X4) = Z 10 Z/3 ® Z/15

EXERCISE : Show in general that H1 (Xk) has a Z summand .

EXERCISE : Recall the definition of connected sum of knots in S3

(section 2G ) . Show that if K = K'## K" and Xk , X~ and Xk are their

respective k-fold cyclic coverings, then

H
1(Xk) = Z ® A' ® A"

* see Fox's Quick Trip for a longer list


