Problems from Munkres assigned Fall 2004, of "qual" caliber:

- p.118 # 10(a): Let A be a set, $\{X_{\alpha}\}_{\alpha \in J}$ a family of topological spaces, and $\{f_{\alpha}\}_{\alpha \in J}$ a family of functions $f_{\alpha} : A \to X_{\alpha}$. Show that there is a unique coarsest topology on A relative to which each of the f_{α} is continuous.
- p.111 # 8: Let $f, g: X \to \mathbb{R}$ be continuous. Let $h: X \to \mathbb{R}$ be defined by $h(x) = \min\{f(x), g(x)\}$ for all $x \in X$. Show that h is continuous.
- p.118 # 3: Show that the product of Hausdorff spaces is Hausdorff.
- p.101 # 8: Let A_{α} be subsets of a topological space X. Determine whether $\overline{\cap A_{\alpha}} = \overline{\cap A_{\alpha}}$ and if not, determine whether either containment \subset or \supset holds.
- p.152 # 11: Let $p: X \to Y$ be a quotient map such that $p^{-1}(\{y\})$ is connected for each $y \in Y$. Show that if Y is connected, then so is X.
- p.158 # 8(b): If $A \subset X$ and A is path connected, is \overline{A} necessarily path connected?
- p.171 # 5: Show that if A, B are disjoint compact subsets of the Hausdorff space X, then there are disjoint open sets $\mathcal{U}, \mathcal{V} \subseteq X$ with $A \subseteq \mathcal{U}$, $B \subseteq \mathcal{V}$.
- p.199 # 5: Let Y be a Hausdorff space and let $f, g: X \to Y$ be continuous. Show that $\{x \mid f(x) = g(x)\}$ is closed in X.
- p.218 # 3: Let X be a compact Hausdorff space. Show that X is metrizable iff X has a countable basis.
- p.330 # 3(b): Show that a contractible space is path connected.
- p.335 # 4: Let $a_0 \in A \subset X$ and let $r: X \to A$ be a retraction. Show that $r_*: \pi_1(X, a_0) \to \pi_1(A, a_0)$ is surjective.
- p.341 # 6(a): Let $p: E \to B$ be a covering map. Show that if B is Hausdorff, then so is E.
- p.353 # 1: Show that if A is a retract of B^2 , then every continuous map $f: A \to A$ has a fixed point.

Problems from Hatcher so far assigned, of "qual" caliber:

- p.39 # 13 : If $x_0 \subseteq A \subseteq X$ with A path-connected, then the inclusion-induced map $\pi_1(A, x_0) \to \pi_1(X, x_0)$ is surjective \Leftrightarrow every path in X with endpoints in A is homotopic, rel endpoints, to a path in A.
- p.39, # 14 : Show that $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$
- p.40, # 20 : If $f_t : X \to X$ is a homotopy from the identity map to itself, then $t \mapsto f_t(x_0)$ is an element in the center of $\pi_1(X, x_0)$.
- p.53, # 6 : Attaching an *n*-cell, $n \ge 3$ to a space does not change its π_1 .
- p.53, # 7: Compute the fundamental group of the space obtained from S^2 by identifying the north and south poles.
- p.53, # 8: Compute the fundmental group of the space obtained by gluing the curves $S^1 \times \{x_0\}$ in two copies of a 2-torus together.
- p.54, # 14 : Compute the fundamental group of the space obtained from the cube by identifying opposite faces, each with a 90-degree right-hand twist.
- p.79, # 1 : If $p: \widetilde{X} \to X$ is a covering map, and $A \subseteq X$, then $p: p^{-1}(A) \to A$ is also a covering map.
- p.79, # 3: If $p: \widetilde{X} \to X$ is a finite-sheeted covering, then \widetilde{X} is compact and Hausdorff $\Leftrightarrow X$ is.
- p.79, # 9: If X is path-connected and locally path-connected, with $\pi_1(X)$ finite, then every map $f: X \to S^1$ is null-homotopic.
- p.80, # 15: If $p: X \to X$ is a universal covering, $A \subseteq X$ path-connected and locally path-connected, and \widetilde{A} a path-component of $p^{-1}(A)$, then $p: \widetilde{A} \to A$ is the covering space corresponding to the kernel of the map $i_*: \pi_1(A) \to \pi_1(X)$.
- p.86, # 2: If $A \subseteq X$ are connected graphs, then there is a retraction $r: X \to A$. [Maybe it's enough to do this for finite graphs?]