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FREE GROUPS. LECTURE NOTES.
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1. Free groups

1.1. Definition, bases. Let S be an arbitrary set. We define the free
group F (S) generated by S, as follows. A word w in S is a finite sequence
of elements which we write as w = y1 . . . yn , where yi ∈ S. The number n is
called the length of the word w, we denote it by |w|. The empty sequence of
elements is also allowed. We denote the empty word by e and set its length
to be |e| = 0. Consider the set S−1 = {s−1 | s ∈ S} where s−1 is just a
formal expression. We call s−1 the formal inverse of s. The set

S
±1

= S ∪ S−1

is called the alphabet of F , and an element y ∈ S
±1

of this set is called a
letter. By s1 we mean s, for each s ∈ S.

An expression of the type

w = sε1
i1

. . . sεn
in

(sij ∈ S; εj ∈ {1,−1})
is called a group word in S. So a group word in S is just a word in the
alphabet S

±1
. A group word w = y1 . . . yn (yi ∈ S

±1
) is reduced if the

following condition holds. Whenever yi ∈ S, neither yi−1 nor yi+1 is the
formal inverse of yi, for each i = 1, . . . , n; by y0 and yn+1 one means empty

1
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words. In other words, w contains no subword of the type ss−1 or s−1s, for
all s ∈ S. We assume also that the empty word is reduced.

Let G be a group, and let S ⊆ G be a set of elements of G. In this case,
by the formal inverse s−1 of s ∈ S we mean the inverse of s in G. Every
group word w = sε1

i1
. . . sεn

in
in S determines a unique element from G which

is equal to the product sε1
i1

. . . sεn
in

of the elements s
εj

ij
∈ G. In particular, the

empty word e determines the identity 1 of G.

Definition 1.1. A group G is called a free group if there exists a generating
set S in G such that every non-empty reduced group word in S defines a
non-trivial element of G. If this is the case, then one says that G is freely
generated by S (or that G is free on S), and S is called a free basis of G.

It follows from the definition that if G is a group freely generated by S,
then different reduced words in S define different elements in G.

1.2. Construction of a free group with basis S. Let S be an arbitrary
set. To construct a free group with basis S, we need to describe a reduction
process which allows one to obtain a reduced word from an arbitrary word.
An elementary reduction of a group word w consists of deleting a subword
of the type yy−1 where y ∈ S±1 from w. For instance, let w = uyy−1v for
some words u and v in S. Then the elementary reduction of w with respect
to the given subword yy−1 results in the word uv. In this event we write

uyy−1v → uv

A reduction of w ( or a reduction process starting at w) consists of conse-
quent applications of elementary reductions starting at w and ending at a
reduced word:

w → w1 → · · · → wn, (wn is reduced)

The word wn is termed a reduced form of w. In general, there may be
different possible reductions of w. Nevertheless, it turns out that all possible
reductions of w end up with the same reduced form. To see this we need
the following lemma.

Lemma 1.2. For any two elementary reductions w → w1 and w → w2 of a
group word w in S there exist elementary reductions w1 → w0 and w2 → w0,
so that the following diagram commutes.

w

↙ ↘
w1 w2

↘ ↙
w0

Proof. Let λ1 : w → w1 and λ2 : w → w2 be elementary reductions of a word
w. We distinguish the following two cases.
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(1) Disjoint reductions. In this case w = u1y1y
−1
1 u2y2y

−1
2 u3 where yi ∈

S±1 and λi deletes the subword yiy
−1
i (i = 1, 2). Then

λ2 ◦ λ1 : w → u1u2y2y
−1
2 u3 → u1u2u3(1)

λ1 ◦ λ2 : w → u1y1y
−1
1 u2u31 → u1u2u3 :(2)

Hence the lemma holds.
(2) Overlapping reductions. In this case y1 = y2 and w takes on the

following form w = u1yy−1yu2. Then

λ2 : w = u1y(y−1y)u2 → u1yu2 and(3)

λ1 : w = u1(yy−1)yu2 → u1yu2(4)

and the lemma holds.
¤

Proposition 1.3. Let w be a group word in S. Then any two reductions of
w:

w → w′0 → · · · → w′n and(5)

w → w′′0 → · · · → w′′m(6)

result in the same reduced form, in other words, w′n = w′′m.

Proof. Our proof is by induction on |w|. If |w| = 0 then w is reduced and
there is nothing to prove. Let now |w| > 1. Then by Lemma 1.2, there are
elementary reductions w′0 → w0 and w′′0 → w0. Consider a reduction process
for w0 → w1 → · · · → wk. This corresponds to the following diagram:

w

↙ ↘
w′0 w′′0

↙↘ ↙↘
w′1 w0 w′′1
↓ ↓ ↓

· · · w1 · ··
↓ ↓ ↓

w′n · · · w′′m
↓
wk

By the induction hypothesis, all reduced forms of the word w′0 are equal
to each other, as well as all reduced forms of w′′0 . Since wk is a reduced form
of both w′0 and w′′0 , we have that w′n = wk = w′′m as desired. This proves the
proposition. ¤
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For a group word w, by w̄ we denote the unique reduced form of w.
Let F (S) be the set of all reduced words in S. For u, v ∈ F (S) we define
multiplication u · v as follows:

u · v = uv.

Theorem 1.4. The set F (S) forms a group with respect to the multiplication
“ · ”. This group is free on S.

Proof. The multiplication defined above is associative:

(u · v) · w = u · (v · w)

for all u, v, w ∈ F (S). To see this it suffices to prove that (uv)w = u(vw) for
given u, v, w. Observe that each one of the reduced words (uv)w and u(vw)
can be obtained form the word uvw by a sequence of elementary reductions,
hence by Proposition 1.3,

uvw = uvw = uvw.

Clearly, the empty word e is the identity in F (S) with respect to the mul-
tiplication defined as above, i.e.,

e · w = w · e
for every w ∈ F (S). For this reason we usually denote e by 1. Let w =
y1 . . . yn with yi ∈ S

±1
be a word in S. Then the word w−1 = y−1

n . . . y−1
1 is

also reduced and

w · w−1 = ¯y1 . . . yny−1
n . . . y−1

1 = 1.

Hence w−1 is the inverse of w. This shows that F (S) satisfies all the axioms
of a group. Notice that S is a generating set of F (S) and every non-empty
reduced word w = sε1

i1
. . . sεn

in
in S±1 defines a non-trivial element in F (S)

(the word w itself). Hence S is a free basis of F (S), so that F (S) is freely
generated by S. ¤

1.3. Word problem and conjugacy problem.

Definition 1.5. (Cyclically reduced word) Let w = y1y2 . . . yn be a word
in the alphabet S±1. The word w is cyclically reduced, if w is reduced and
yn 6= y−1

1 .

Example 1.6. The word w = s1s3s
−1
2 is cyclically reduced, whereas neither

u = s1s
−1
2 s1s3s2s

−1
1 , nor v = s1s

−1
3 s3s

−1
2 is a cyclically reduced word.

If a word w is not cyclically reduced, then one can cyclically reduce it,
by the following procedure. If w is not reduced, then we can reduce w by
a sequence of elementary reductions and get the reduced form w̄ of w. If
w̄ = y1y2 . . . yk is not cyclically reduced, then yk = y−1

1 . We eliminate the
first and the last letter of w̄ and keep doing so, until we obtain a cyclically
reduced word. Note that if w̄ = y1y2 . . . yk−1y

−1
1 and w′ = y2 . . . yk−1 is
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obtained from w̄ by eliminating y1 and yk = y−1
1 , then w̄ and w′ represent

different elements in F (S), that are conjugate:

w̄ = y1w
′y−1

1 .

Apparently, it follows from Proposition 1.3 that a cyclically reduced form of
w is unique.

Example 1.7. If we cyclically reduce the word u = s1s
−1
2 s1s3s2s

−1
1 , then

we obtain u′ = s1s3. Note that u = (s1s
−1
2 )u′(s1s

−1
2 )−1, so that u and u′ are

conjugate in F (S).

Free groups and subgroups of free groups have very good algorithmic
properties. Some of these properties require more developed techniques, and
we prove them later on. Solvability of the word and conjugacy problems can
be easily derived from the definition of a free group.

Lemma 1.8. The word and the conjugacy problem in a free group are solv-
able.

Proof. Observe that there is an (obvious) algorithm to compute both re-
duced and cyclically reduced forms of a given word w.

Our algorithm to solve the word problem is based on Proposition 1.3: a
word w represents the trivial element in F (S) if and only if the reduced form
of w is the empty word.

Now, let ũ and ṽ be two words in the alphabet S, and let u and v be the
cyclically reduced forms of these words. Then ũ = guug−1

u and ṽ = gvvg−1
v

for some gu and gv in F (S). Therefore, ũ and ṽ represent conjugate elements
in F (S) if and only if u and v are conjugate in F (S). Indeed,

ũ = gṽg−1 ⇔ guug−1
u = ggvvg−1

v g−1 ⇔ u = (g−1
u ggv)v(g−1

u ggv)−1.

Thus, to solve the conjugacy problem, we can assume that we are given two
elements u = y1 . . . yn and v = z1 . . . zm in cyclically reduced forms, and
these reduced forms are distinct: y1 . . . yn 6= z1 . . . zm (for if they are equal,
then they are conjugate by the trivial element, and we are done). Assume
that u and v are conjugate in F (S). In other words, we assume that there
is a reduced word g = s1 . . . sk so that the following equality holds:

y1 . . . yn = s1 . . . skz1 . . . zms−1
k . . . s−1

1 .

Since two elements of F (S) are equal if and only if their reduced forms
are the same, and y1 . . . yn is a cyclically reduced word, we conclude that
the word in the right-hand side is not reduced. Hence, either s−1

k = z1, or
sk = zm. Without loss of generality, we can assume that sk = z−1

1 , so that
we can eliminate the pair skz1 by an elementary reduction.

If k = 1, then s−1
1 = z1, and we have that

y1 . . . yn = s1z1z2 . . . zms−1
1 = s1s

−1
1 z2 . . . zms−1

1 = z2 . . . zms−1
1 = z2 . . . zmz1,

so that the word y1 . . . yn is obtained from the word z1 . . . zm by cyclic per-
mutation of the letters. Since the word z1 . . . zm is cyclically reduced, each
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cyclic permutation of it is reduced. In particular, y1 . . . yn and z2 . . . zmz1

are reduced forms of the same element in F (S), hence these two words are
the same.

For k > 1, we proceed by induction on the length k of the conjugating
element. Indeed, it suffices to observe that

y1 . . . yn = s1 . . . sk−1skz1 . . . zms−1
k s−1

k−1 . . . s−1
1

= s1 . . . sk−1z2 . . . zmz1s
−1
k−1 . . . s−1

1 ,

where z2 . . . zmz1 is a (cyclically reduced) cyclic permutation of z1 . . . zm. ¤

1.4. The universal property of free groups.

Theorem 1.9. Let G be a group with a generating set S ⊂ G. Then G is
freely generated by S if and only if G has the following universal property.
Every map φ : S → H from S into a group H can be extended to a unique
homomorphism φ̃ : G → H so that the diagram below commutes

S ↪→ G

φ ↘ ↓ φ̃

H

(here S ↪→ G is the inclusion of S into G).

Proof. Let G be a group freely generated by S and let φ : S → H be a map
from S into a group H. Since G is freely generated by S, every element
g ∈ G is defined by a unique reduced word in S±1. Let

g = sε1
i1
· · · · · sεn

in
(sij ∈ S, εi ∈ {1,−1}).

We set φ̃(g) to be

(7) φ̃(g) = (φ(si1))
ε1 . . . (φ(sin))εn .

We claim that φ̃ is a homomorphism. Indeed, let g, h ∈ G be so that

g = y1 . . . ynz1 . . . zm and h = z−1
m . . . z−1

1 yn+1 . . . yk

are the corresponding reduced words in S, where yi, zj ∈ S±1 and yn 6= y−1
n+1

(we allow the subwords y1 . . . yn, z1 . . . zm and yn+1 . . . yk to be empty). Then

gh = y1 . . . ynyn+1 . . . yk

is a reduced word in S that presents gh. Now,

φ̃(gh) = φ̃(y1) . . . φ̃(yn)φ̃(yn+1) . . . φ̃(yk)

= φ̃(y1) . . . φ̃(yn)φ̃(z1) . . . φ̃(zm)φ̃(zm)−1 . . . φ̃(z1)−1φ̃(yn+1) . . . φ̃(yk)

= φ̃(g)φ̃(h)

Hence φ̃ is a homomorphism. Clearly, φ̃ extends φ and the corresponding
diagram commutes. Observe that any homomorphism φ̃ : G → H that makes
the diagram commutative, must satisfy the equalities (7), so φ̃ is unique.
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This shows that G satisfies the required universal property. Suppose now
that a group G with a generating set S satisfies the universal property. Take
H = F (S) and define a map φ : S → H by φ(s) = s for each s ∈ S. Then by
the universal property φ extends to a unique homomorphism φ̃ : G → F (S).
Let w be a non-empty reduced group word on S. Then w defines an element
g in G for which φ̃(g) = w ∈ F (S). Hence φ̃(g) 6= 1 and consequently g 6= 1
in G. This shows that G is a free group on S. This proves the theorem. ¤

Observe that the argument above implies the following result, which we
state as a corollary.

Corollary 1.10. Let G be a free group on S. Then the identical map S → S
extends to an isomorphism G → F (S).

This corollary allows us to identify a free group freely generated by S
with the group F (S). In what follows we usually refer to the group F (S) as
to the free group on S.

1.5. The Isomorphism problem.

Theorem 1.11. Let G be freely generated by a set S, and let H be freely
generated by a set U . Then G ∼= H if and only if |S| = |U |.
Proof. First, assume that |S| = |U |. Fix a bijection σ : S → U . By
the universal property, σ extends to a homomorphism σ̃ : F (S) → F (U).
Similarly, the bijection τ = σ−1 : U → S extends to a homomorphism
τ̃ : F (U) → F (S). Let 1G ∈ Aut(G) and 1H ∈ Aut(H) denote the iden-
tity automorphisms of G and H, respectively. The equalities τ̃ ◦ σ̃ = 1G

and σ̃ ◦ τ̃ = 1H imply that the kernel of σ̃ is trivial and that σ̃ is an
onto homomorphism. Altogether, we have that σ̃ is an isomorphism, and
so F (S) ∼= F (U). By Corollary 1.10, G ∼= F (S) and H ∼= F (U), so that
G ∼= H.

Now, let G ∼= H. Let K ⊆ G be the subgroup generated by {g2 | g ∈ G}.
Let k = g2

1g
2
2 . . . g2

n, and let g ∈ G. Observe that

gkg−1 = gg2
1g

2
2 . . . g2

ng−1 = (gg2
1g
−1)(gg2

2g
−1) . . . (gg2

ng−1)

= (gg1g
−1)2(gg2g

−1)2 . . . (ggng−1)2 ∈ K,

so that K C G. Also observe that for all g, b ∈ G we have that

[g, b] = gbg−1b−1 = g−1g2b2b−1g−1b−1 = (g−1g2b2g)(g−1b−1)2 ∈ K,

hence G/K is abelian. Let η : G → G/K be the natural homomorphism.
Whereas s2 ∈ K obviously, s /∈ K, for all s ∈ S, because |k| ≥ 2 for all
k ∈ K; we conclude that η(s) ∈ G/K has the order 2. We claim that
for any s1, s2 ∈ S such that s1 6= s2, the images η(s1) 6= η(s2) are distinct.
Indeed, by the way of contradiction, assume that s1s

−1
2 = g2 for some g ∈ G.

Since the word s1s
−1
2 is reduced, g = s1y1 . . . yms−1

2 for some m ≥ 0 and yi ∈
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S±1; in particular, g is cyclically reduced, hence |g2| ≥ 4, a contradiction.
Therefore,

G/K ∼=Z2 × Z2 × · · · × Z2︸ ︷︷ ︸ .

|S| times

Similarly, one considers P C H generated by {h2 | h ∈ H}. Since G and
H are isomorphic, so are P and K, and G/K ∼= H/P . The classification
theorem for finite abelian groups implies that |S| = |U |. ¤

Corollary 1.12. The isomorphism problem for finitely generated free groups
is solvable.

Exercise. If G and H are defined by presentations, where both generat-
ing sets are bases: G = 〈S | − 〉 and H = 〈U | − 〉, then there is an obvious
algorithm to determine, whether or not G and H are isomorphic. Find an
algorithm in the case, when G = 〈S | − 〉 (so that G is freely generated
by S) and H = 〈U | R〉 is a free group defined by the presentation with
non-empty set R of relations.

1.6. Embeddings of free groups.

Definition 1.13. Let G be a free group on S. Then the cardinality of S is
called the rank of G.

Sometimes we refer to a free group of rank n as to Fn. Notice that if
S ⊆ Y , then the subgroup 〈S〉 generated by S in F (Y ) is itself a free group
with basis S. This implies that if m and n are cardinals and n ≤ m, then
Fn can be embedded into Fm. We will show now that free groups of larger
ranks can be embedded into free groups of smaller ranks.

We say that a group G embeds into a group H, if there is a monomorphism
φ : G → H. If φ(G) $ H, then we say that G properly embeds into H and
that φ is a proper embedding.

Proposition 1.14. Any countable free group G can be embedded into a free
group of rank 2.

Proof. To prove the result it suffices to find a free subgroup of countable
rank in a free group of rank 2. Let F2 be a free group with a basis {a, b}.
Denote

xn = bnab−n (n = 0, 1, 2, . . . )
and let S = {x0, x1, x2, . . . }. We claim that S freely generates the subgroup
〈S〉 in F2. Indeed, let

w = xε1
i1

xε2
i2

. . . xεn
in

be a reduced non-empty word in S±1. Then w can also be viewed as a word
in {a, b}. Indeed,

w = bi1aε1b−i1bi2aε2b−i2 . . . binaεnb−in .
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Since w is a reduced word in S, we have that either ij 6= ij+1, or ij = ij+1

and εj + εj+1 6= 0, for each j = 1, 2, . . . , n− 1. In either case, any reduction
of w (as a word in {a, b}) does not affect aεj and aεj+1 in the subword

bijaεjb−ijbij+1aεj+1b−ij+1

i.e., the literals aεj and aεj+1 are present in the reduced form of w as a word
in {a, b}±1. Hence the reduced form of w is non-empty, so w 6= 1 in F2.
Clearly, 〈S〉 is a free group of countable rank. ¤
1.7. Examples and properties of free groups. Whereas the construc-
tion of a free group in Section 1.2 may seem somewhat artificial, free groups
occur as subgroups in many groups that exist in the ”real life”. The following
lemma is often used in proofs of this kind.

Lemma 1.15. (Ping-pong lemma) Let a group G, generated by a and b, act
on a set X. Assume that there are two nonempty subsets A and B of X, so
that A ∩ B = ∅, and an.B ⊆ A and bn.A ⊆ B for all integers n 6= 0. Then
G is freely generated by a and b.

Proof. Let w be a nonempty reduced word in the alphabet a±1, b±1. W.l.o.g.,
we can assume that w begins and ends with a±1, for if not then for m large
enough a conjugate w1 = amwa−m of w does, and w = 1 iff w1 = 1. Let
w = an1bm1 · ank−1bmk−1ank , with ni,mi 6= 0. Then

w.B =an1bm1 · ank−1bmk−1ank .B ⊆ an1bm1 · ank−1bmk−1 .A ⊆
an1bm1 · ank−1 .B ⊆ · · · ⊆ an1 .B ⊆ A.

It follows that w 6= 1, and so a and b freely generate G. ¤
Corollary 1.16. The matrices

A =
[

1 2
0 1

]
and B =

[
1 0
2 1

]

generate a free subgroup in SL2(Z).

Proof. Denote by G = 〈A,B〉 the subgroup of SL2(Z) generated by A and
B. The group G acts on X = R2, and if we set V = {[x, y]T | |x| < |y|} and
W = {[x, y]T | |x| > |y|}, then An.W ⊆ V and Bn.V ⊆ W , for all n 6= 0.
By the Ping-pong lemma, G is freely generated by A and B. ¤
Definition 1.17. A group G is called linear if it can be embedded into a
group of matrices GLn(P) for some integer n ≥ 1 and some field P.
Theorem 1.18. A free group of countable rank is linear. In particular, any
finitely generated free group is linear.

Proof. The assertion is immediate from Corollary 1.16 and Proposition 1.14.
¤

Definition 1.19. A group G is called residually finite if for any nontrivial
element g ∈ G there exists a homomorphism φ : G → H into a finite group
H so that φ(g) 6= 1.
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Clearly, finite groups are residually finite, and subgroups of residually
finite groups are residually finite.

Exercise. Prove that SLn(Z) is residually finite.

Theorem 1.20. Free groups are residually finite.

Proof. The assertion is immediate from Theorem 1.18 and the Exercise. ¤

2. Presentations of groups

The universal property of free groups allows one to describe arbitrary
groups in terms of generators and relators. Let G be a group with a gener-
ating set S. By the universal property of free groups there exists a homo-
morphism ϕ : F (S) → G such that ϕ(s) = s for s ∈ S. It follows that ϕ is
onto, so by the first isomorphism theorem

G ' F (S)/ker(ϕ).

In this event ker(ϕ) is viewed as the set of relators of G, and a group word
w ∈ ker(ϕ) is called a relator of G in generators S. If a subset R ⊂ ker(ϕ)
generates ker(ϕ) as a normal subgroup of F (S) then it is termed a set of
defining relations of G relative to S. The pair 〈S | R〉 is called a presentation
of G, it determines G uniquely up to isomorphism. The presentation 〈S | R〉
is finite if both sets S and R are finite. A group is finitely presented if it has
at least one finite presentation. Presentations provide a universal method
to describe groups.

Example 2.1. Examples of finite presentations.
(1) G = 〈s1, . . . , sn | [si, sj ], ∀1 ≤ i < j ≤ n〉 is the free abelian group of

rank n.
(2) Cn = 〈s | sn = 1〉 is the cyclic group of order n.
(3) Both presentations 〈a, b | ba2b−1a−3〉 and 〈a, b | ba2b−1a−3, [bab−1, a]〉

define the Baumslag-Solitar group BS(2, 3) (to be proved in Assign-
ment 2).

2.1. Homomorphisms of groups. If a group G is defined by a presenta-
tion, then one can try to find homomorphisms from G into other groups.

Lemma 2.2. Let G = 〈S | R〉 be a group defined by a (finite) presentation
with the set of relators R = {rj = y

(j)
i1

. . . y
(j)
ij
| y(j)

i ∈ S±1, 1 ≤ j ≤ m}, and
let H be an arbitrary group. A map ψ : S±1 → H extends to a homomor-
phism ψ̃ : G → H, if and only if ψ(rj) = ψ(y(j)

i1
) . . . ψ(y(j)

ij
) = 1 in H for all

rj ∈ R.

Proof. Define the map ψ̃ : G → H by

ψ̃(yn1 . . . ynt) = ψ(yn1) . . . ψ(ynt),

whenever yni ∈ S±1 (cf. the proof of Theorem 1.9). If ψ̃ is a homomorphism,
then obviously ψ̃(rj) = 1 for all rj ∈ R.
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Now, assume that ψ̃ is defined as above, and that ψ̃(rj) = 1 for all rj ∈ R
Let η be the natural homomorphism from the free group F (S) onto G, let
U = ψ(S±1), and let F (U) be the free group on U . There is a natural
homomorphism λ from the free group F (U) onto the subgroup H1 of H
generated by U = ψ(S±1) in H. By the universal property of free groups,
the map ψ : S±1 → U extends to a homomorphism α : F (S) → F (U), so
that the composition of homomorphisms λ ◦ α is a homomorphism from
F (S) onto H1:

α : F (S) → F (U)
η ↓ ↓ λ

G H

Let g = yn1 . . . ynt ∈ G, where yni ∈ S±1. Without loss of generality,
we can assume that the word wg = yn1 . . . ynt is reduced. We regard the
word wg as an element of F (S), and define ψ̃(g) = λ ◦α(wg). We only need
to check that λ ◦ α(wg) = λ ◦ α(wb), whenever η(wg) = η(wb). Recall that
η(wg) = η(wb) if and only if wg = wbwk, where wk ∈ ker(η). Our assumption
on ψ implies that λ ◦α(wk) = 1 in H, so that λ ◦α(wg) = λ ◦α(wb) indeed,
and the map ψ̃(g) is well defined. In other words, we define the images
of elements of G in H to be equal to the images of representatives of left
cosets of F (S) with respect to the kernel of the natural homomorphism
η : F (S) → G. As we have just shown, the image of g ∈ G does not depend
on a choice of a representative in F (S), hence our definition of the map ψ̃ is
correct. It is immediate from the definition of ψ̃ that ψ̃ is a homomorphism.
The assertion is proved. ¤

Let G be a group, by the commutant (or derived subgroup) G′ of G we
mean the subgroup generated by all the commutators [g, b] = gbg−1b−1 in
G. Since a[g, b]a−1 = [aga−1, aba−1], the commutant is a normal subgroup
of G. The quotient G/G′ is called the abelianization of G. This name is
given to this quotient because G/G′ is an abelian group.

For example, the abelianization of a free group Fn is the free abelian
group of rank n. In general, if

G = 〈s1, . . . , sn | r1, . . . , rm〉, then

G/G′ = 〈s1, . . . , sn | r1, . . . , rm, [si, sj ](1 ≤ i < j ≤ n)〉

As the following corollary shows, the abelianization G/G′ is the largest
abelian quotient of G, in a sense.

Corollary 2.3. Let H be an abelian quotient of G, and let ν : G → G/G′ and
ψ : G → H be the natural homomorphisms. Then there is a homomorphism
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ϕ : G/G′ → H so that the following diagram commutes:

G → G/G′

ψ ↘ ↓ ϕ

H

Proof. Let G be generated by S = {s1, . . . , sn}, then G/G′ is generated by
ν(S) = {ν(s1), . . . , ν(sn)}. We still denote ν(si) by si, since we want to fix
the alphabet S±1 for both G and G/G′. Hence, G/G′ has the presentation
above. Define a map ϕ′ : ν(S) → H by ϕ′(si) = ψ(si) for all i. Observe
that ϕ′(rj) = ψ(rj) = 1 in H, since ψ is a homomorphism and rj = 1 in
G. Also, ϕ′([si, sj ]) = ψ([si, sj ]) = [ψ(si), ψ(sj)] = 1, since H is abelian. It
follows now from Lemma 2.2 that the map ϕ′ extends to a homomorphism
from G/G′ to H. ¤

2.2. Tietze transformations. As we have seen, a group can have many
presentations. It turns out that all the presentations of G can be obtained
from a given presentation

(8) G = 〈a, b, c, · · · | r1, r2, r3, . . . 〉
by a sequence of so-called Tietze transformations. These transformations,
introduced by H. Tietze in 1908, are as follows:

(T1) If the words p, q, . . . are derivable from r1, r2, r3, . . . , then add p, q, . . .
to the defining relators in (8).

(T2) If some of the relators, say, p, q, . . . , listed among the defining relators
r1, r2, r3, . . . are derivable from the others, delete p, q, . . . from the defining
relators in (8).

(T3) If x, y . . . are any words in a, b, c, . . . , then adjoin the symbols
g, h, . . . to the generating symbols in (8) and adjoin the relations g = x,
h = y, . . . to the defining relators in (8).

(T4) If some of the defining relations in (8) take the form g = x, h = y, . . . ,
where g, h, . . . are generators in (8) and x, y . . . are words in the generators
other than g, h, . . . , then delete g, h, . . . from the generators, delete g =
x, h = y, . . . from the defining relations, and replace g, h, . . . by x, y . . .
respectively, in the remaining defining relators in (8).

Theorem 2.4. Given two presentations of a group G,

(9) G = 〈a1, a2, · · · | r1, r2, . . . 〉
and

(10) G = 〈b1, b2, · · · | p1, p2, . . . 〉,
then (10) can be obtained from (9) by a repeated application of the Tietze
transformations (T1),(T2),(T3) and (T4).

Proof. We only outline the idea of a proof here. The generators b1, b2, . . . are
elements of G, hence they can be expressed as words b1 = B1(a1, a2, . . . ),
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b2 = B2(a1, a2, . . . ) in a1, a2, . . . . Use (T3) to adjoin the new generat-
ing symbols b1, b2, . . . and adjoin the relations b1 = B1(a1, a2, . . . ), b2 =
B2(a1, a2, . . . ) to the presentation (9). Now, one can adjoin the defining
relations p1, p2, . . . so as to get the presentation

(11) G = 〈a1, a2, . . . , b1, b2, · · · | r1, r2, . . . , p1, p2, . . . 〉.
Express a1, a2, . . . in terms of b1, b2, . . . so as to express the relators r1, r2, . . .
in terms of b1, b2, . . . , and apply (T4) and (T2) to (11). One ends up with
the presentation (10). ¤
Claim 2.5. The presentation

H = 〈x, y, z | y(xyz−1)2x, z(xyz−1)3, [x, y], [y, z], [z, x]〉
defines the free abelian group of rank 2.

Proof. Let A = 〈a, b | [a, b]〉 be the free abelian group of rank two. We
use the Tietze transformation (T3) to adjoin the new generators x = ab,
y = b−1a, z = a3, so as to get the following presentation of A:

A ∼= 〈a, b, x, y, z | [a, b], x = ab, y = b−1a, z = a3〉.
Now, it follows from the relations in this latter presentation that a = z(xy)−1

and b = z(xy)−1y−1 = z(yxy)−1, as well as [x, y] = [y, z] = [x, z] = 1; add
these new relations to this presentation, using (T1).

Now, we use (T4) to eliminate a and b from the presentation:

A ∼= 〈x, y, z | x = z(xy)−1z(yxy)−1, y = yxyz−1z(xy)−1,

z = (z(xy)−1)3, [x, y], [y, z], [x, z]〉.
The second relation is trivial, so that we can eliminate it (this is a particular
case of (T2)). It can be readily seen that in this latter presentation of A
the relators are cyclic permutations of the relators from the presentation of
H. ¤
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