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Preface

The inspiration for this book is the remarkable interplay, expecially in the past
few decades, between topology and the theory of orderable groups. Applications
go in both directions. For example, orderability of the fundamental group of a 3-
manifold is related to the existence of certain foliations. On the other hand, one can
apply topology to study the space of all orderings of a given group, providing strong
algebraic applications. Many groups of special topological interest are now known
to have invariant orderings, for example braid groups, knot groups, fundamental
groups of (almost all) surfaces and many interesting manifolds in higher dimensions.

There are several excellent books on orderable groups, and even more so for
topology. The current book emphasizes the connections between these subjects,
leaving out some details that are available elsewhere, although we have tried to
include enough to make the presentation reasonably self-contained. Regrettably we
could not include all interesting recent developments, such as Mineyev’s [71] use of
left-orderable group theory to prove the Hanna Neumann conjecture.

This book may be used as a graduate-level text; there are quite a few problems
assigned to the reader. It may also be of interest to experts in topology, dynamics
and/or group theory as a reference. A modest familiarity with group theory and
with basic topology is assumed of the reader.

We gratefully acknowledge the help of the following people in the preparation
of this book: Maxime Bergeron, Steve Boyer, Patrick Dehornoy, Colin Desmarais,
Andrew Glass, Cameron Gordon, Herman Goulet-Ouellet, Tetsuya Ito, Darrick Lee,
Andrés Navas, Akbar Rhemtulla, Cristóbal Rivas, Daniel Sheinbaum, Bernardo
Villareal-Herrera, Bert Wiest.

Adam Clay and Dale Rolfsen

In these days the angel of topology and the devil of abstract algebra fight for the
soul of each individual mathematical domain.

Hermann Weyl, 1939
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CHAPTER 1

Orderable groups and their algebraic properties

In this chapter we will discuss some of the special algebraic properties enjoyed
by orderable groups, which come in two basic flavors: left-orderable and the more
special bi-orderable groups. As we’ll soon see, a group is right-orderable if and
only if it is left-orderable. The literature is more or less evenly divided between
considering right- and left-invariant orderings. Some authors (including those of
this book) have flip-flopped on the issue of right vs. left. Of course results from the
“left” school have dual statements in the right-invariant world, but as with driving,
one must be consistent.

There are several useful reference books on ordered groups, such as Fully ordered
groups by Kokorin and Kopytov [57], Orderable groups by Mura and Rhemtulla [7],
Right-ordered groups by Kopytov and Medvedev [59] and A. M. W. Glass’ Partially
ordered groups [35]. Many interesting results and examples on orderability of groups
which won’t be discussed here can be found in these books. We will focus mostly on
groups of special topological interest and results relevant to topological applications.
On the other hand, we try to include enough material to provide context and to
make the core development of ideas in this book reasonably self-contained.

1.1. Invariant orderings

By a strict ordering of a set X we mean a binary relation < which is transitive
(x < y and y < z imply x < z) and such that x < y and y < x cannot both hold. It
is a strict total ordering if for every x, y ∈ X exactly one of x < y, y < x or x = y
holds.

A group G is called left-orderable if its elements can be given a strict total
ordering < which is left invariant, meaning that g < h implies fg < fh for all
f, g, h ∈ G. We will say that G is bi-orderable if it admits a total ordering which
is simultaneously left and right invariant (historically, this has been called simply
“orderable”). We refer to the pair (G,<) as the ordered group. We shall usually
use the symbol 1 to denote the identity element of a group G. However, for abelian
groups in which the group operation is denoted by addition, the identity element
may be denoted by 0. In an ordered group the symbols ≤ and > have the obvious
meaning: g ≤ h means g < h or g = h; g > h means h < g. Note that the opposite
ordering can also be considered an ordering, also invariant.

Problem 1.1. Show that

(1) In a left-ordered group one has 1 < g if and only if g−1 < 1.
(2) In a left-ordered group, if 1 < g and 1 < h, then 1 < gh.
(3) A left-ordering is a bi-ordering if and only if the ordering is invariant

under conjugation.

1



2 1. ORDERABLE GROUPS AND THEIR ALGEBRAIC PROPERTIES

As already mentioned, the class of right-orderable groups is the same as the
class of left-orderable groups. In fact, a concrete correspondence can be given as
follows.

Problem 1.2. If < is a left-invariant ordering of the group G, show the recipe

g ≺ h ⇐⇒ h−1 < g−1

defines a right-invariant ordering ≺ which has the same “positive cone” – that is:
1 ≺ g ⇐⇒ 1 < g.

The following shows that left-orderable groups are infinite, with the exception
of the trivial group, consisting of the identity alone.

Proposition 1.3. A left-orderable group has no elements of finite order. In
other words, it is torsion-free.

Proof: If g is an element of the left-ordered group G and 1 < g, then g < g2,
g2 < g3 and so on, and by transitivity we conclude that 1 < gn for all positive
integers n. The case g < 1 is similar.

Problem 1.4. Show that if f and g are elements of a left-ordered group and
f 6= 1 then g is strictly between fg and f−1g and also strictly between gf and gf−1.

1.2. Examples

Example 1.5. The additive reals (R,+), rationals (Q,+) and integers (Z,+)
are bi-ordered groups, under their usual ordering. On the other hand, the multi-
plicative group of nonzero reals, (R \ {0}, ·), cannot be bi-ordered. The element −1
has order two; by Proposition 1.3 this is impossible in a left-orderable group.

Example 1.6. Both left- and bi-orderability are clearly preserved under taking
subgroups. If G and H are left- or bi-ordered groups, then so is their direct product
G×H using lexicographic ordering , which declares that (g, h) < (g′, h′) if and only
if g <G g′ or else g = g′ and h <H h′.

Example 1.7. Consider the additive group Z2. It can be ordered lexicograph-
ically as just described, taking G = H = Z. Another way to order Z2 is to think of
it sitting in the plane R2 in the usual way, and then choose a vector ~v ∈ R2 which
has irrational slope. We can order ~m = (m1,m2), ~n = (n1, n2) ∈ Z2 according to
their dot product with ~v, that is

~m < ~n ⇐⇒ m1v1 +m2v2 < n1v1 + n2v2

We leave the reader to check that this is an invariant strict total ordering, and
that one obtains uncountably many different orderings of Z2 in this way. If ~v has
rational slope, then one may also compare as above, but using lexicographically the
dot product with v and then with some pre-chosen vector orthogonal to ~v. Higher
dimensional spaces can be invariantly ordered in a similar manner.

Problem 1.8. Suppose G is a group with normal subgroup K and quotient
group H ∼= G/K. In other words, suppose there is an exact sequence

1→ K ↪→ G
p−→ H → 1.

Further suppose (H,<H) and (K,<K) are left-ordered groups. Verify that we can
then give G a left-ordering defined in a sort of lexicographic way: declare that
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Figure 1. The Klein bottle as a square with opposite sides iden-
tified as shown.

g < g′ if and only if either p(g) <H p(g′) or else p(g) = p(g′) (so g−1g′ ∈ K) and
1 <K g−1g′.

Example 1.9. The Klein bottle is a nonorientable surface, which can be con-
sidered as a square with opposite sides identified with each other in the directions
indicated in Figure 1.2. We see that its fundamental group has the presentation
with two generators x and y and the relation yxyx−1 = 1. In other words,

K = π1(Klein Bottle) ∼= 〈x, y | xyx−1 = y−1〉

Problem 1.10. Show that the subgroup 〈y〉 of the Klein bottle group K which is
generated by y is a normal subgroup isomorphic to Z and that the quotient subgroup
K/〈y〉 is also isomorphic with Z. Use this to show that K is left-orderable. Finally,
conclude that K cannot be given a bi-invariant ordering, by using the defining re-
lation to derive a contradiction.

Example 1.11. Let Homeo+(R) denote the group of all order-preserving home-
omorphisms of the real line – that is, continuous functions with continuous inverses
and which preserve the usual order of the reals. This is a group under composition.
It can be left-ordered in the following way. Let x1, x2, . . . be a countable dense set
of real numbers. For two functions f, g ∈ Homeo+(R), compare them by choosing
m = m(f, g) to be the minimum i for which f(xi) 6= g(xi) and then declare that
f ≺ g if and only if f(xm) < g(xm) (in the usual ordering of R).

Problem 1.12. Verify that ≺ is a left-ordering of Homeo+(R). Hint: to show
that f ≺ g, g ≺ h =⇒ f ≺ h, consider the cases m(f, g) = m(g, h) and m(f, g) 6=
m(g, h) separately.

We will see later that Homeo+(R) is universal for countable left-orderable
groups, in the sense that any countable left-orderable group embeds in Homeo+(R).

Problem 1.13. Suppose that G is a path connected topological group, which

as a space has universal cover G̃. Show that there is a multiplication on G̃ that is

compatible with the multiplication on G, meaning that the covering map p : G̃→ G
becomes a group homomorphism.
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Recall that a (left) action of a group G on a set X is a binary operation
G×X → X which satisfies 1x = x and (gh)x = g(hx) for all g, h ∈ G, x ∈ X.

Problem 1.14. Suppose that G and G̃ are as above and G acts on a space X.

Show that if X̃ is the universal cover of X, then G̃ acts on X̃.

Example 1.15. The group

SL(2,R) =

{(
a b
c d

)
: a, b, c, d ∈ R, ad− bc = 1

}
is naturally a subgroup of SL(2,C), and it is conjugate to the subgroup

SU(1, 1) =

{(
α β
β̄ ᾱ

)
: α, β ∈ C, |α|2 − |β|2 = 1

}
The conjugacy is given by sending each matrix A ∈ SL(2,R) to the matrix JAJ−1 ∈

SU(1, 1), where J =

(
1 −i
1 i

)
. Now thinking of the group in this way, we can

observe a faithful action of PSL(2,R) = SL(2,R)/{±I} on the unit circle S1 ⊂ C
by homeomorphisms. An element of PSL(2,R) acts on z ∈ S1 by first choosing
a representative A ∈ SL(2,R), converting A to an element of SU(1, 1) and then

applying the associated Möbius transformation. In other words if A =

(
a b
c d

)
then JAJ−1 =

(
α β
β̄ ᾱ

)
for some α, β ∈ C with |α|2 − |β|2 = 1, and then we can

define

A(z) =
αz + β

β̄z + ᾱ

By considering SL(2,R) as a subspace of R4, we can think of it as a 3-manifold
and its quotient PSL(2,R) is also a manifold. Thus it admits a universal cov-

ering space p : P̃SL(2,R) → PSL(2,R), and the universal covering space has a
group structure that is lifted from the base space, as in Problem 1.13. The action

of PSL(2,R) on the circle lifts to an action of P̃SL(2,R) on R by orientation-

preserving homeomorphisms by Problem 1.14, so we can think of P̃SL(2,R) as a
subgroup of Homeo+(R) (see [55] for details). Since Homeo+(R) is left-orderable,

so is P̃SL(2,R).

Problem 1.16. Check that the definition in the previous example yields an
action of PSL(2,R) on S1, by checking that A 7→ JAJ−1 defines an isomorphism

of SL(2,R) with SU(1, 1), and that

∣∣∣∣∣αz + β

β̄z + ᾱ

∣∣∣∣∣ = 1 whenever |z| = 1.

Problem 1.17. Show that, as a subspace of R4, SL(2,R) is homeomorphic with
an open solid torus: SL(2,R) ∼= S1×C. Moreover show that the action on SL(2,R)
given by M → −M is fixed-point free, and so PSL(2,R) is a manifold, in fact also
an open solid torus, and the projection map SL(2,R) → PSL(2,R) is a covering
space.

Problem 1.18. Conclude that P̃SL(2,R) is homeomorphic with R3.
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1.3. Bi-orderable groups

We summarize a few algebraic facts about bi-orderable groups, which do not
hold in general for left-orderable groups, and leave their proofs to the reader. For
example, inequalities multiply:

Problem 1.19. In a bi-ordered group g1 < h1 and g2 < h2 imply g1g2 < h1h2.

Problem 1.20. Bi-orderable groups have unique roots, that is, if gn = hn for
some n > 0 then g = h.

The following was observed by B. H. Neumann [79].

Problem 1.21. In a bi-orderable group G, gn commutes with h if and only
if g commutes with h. Hint: For the nontrivial direction, assume g and h do
not commute, say g < h−1gh, and multiply this inequality by itself several times
to conclude gn cannot commute with h. Show more generally that if gn and hm

commute for some nonzero integers m and n, then g and h must commute.

Problem 1.22. Bi-orderable groups do not have generalized torsion: any prod-
uct of conjugates of a nontrivial element must be nontrivial. In particular, x−1yx =
y−1 implies y = 1.

On the down side, bi-orderable groups do not behave as nicely under extension
as left-orderable groups do. As seen in Problem 1.10 we have a group K which is
flanked by bi-orderable groups in a short exact sequence (and is left-orderable for
that reason) but it is not bi-orderable.

Problem 1.23. Consider groups K, G and H = G/K as in Problem 1.8, with

1→ K ↪→ G
p−→ H → 1

exact. Suppose K and H are bi-ordered. Then the recipe of Problem 1.8 defines a
bi-ordering of G if and only if the conjugation action of G upon K preserves the
given ordering of K.

1.4. Positive cone

Theorem 1.24. A group G is left-orderable if and only if there exists a subset
P ⊂ G such that

(1) P · P ⊂ P and
(2) for every g ∈ G, exactly one of g = 1, g ∈ P or g−1 ∈ P holds.

Proof: Given such a P , the recipe g < h if and only g−1h ∈ P is easily seen to
define a left-invariant strict total order, and conversely such an ordering defines the
set P = {g ∈ G : 1 < g}, called the positive cone.

Problem 1.25. Verify the details of this proof.

Problem 1.26. Show that G is bi-orderable if and only if it admits a subset P
satisfying (1), (2) above, and in addition

(3) gPg−1 ⊂ P for all g ∈ G.

Example 1.27. The positive cone for the ordering of Z2 described in Problem
1.7 is the set of all points in the plane which lie to one side of the line through the
origin which is orthogonal to ~v, if ~v has irrational slope. If the slope is rational,
one must also include points of Z2 on one half of that orthogonal line to lie in the
positive cone.
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Example 1.28. In Problem 1.8, the positive cone for the ordering described
for G is the union of the positive cone of (the ordering of) K and the pullback
p−1(PH) of the positive cone of H. That is: PG = PK ∪ p−1(PH).

Problem 1.29. Let (G,<) be a left-ordered group. Then the following are
equivalent:

(1) The ordering < is also right-invariant.
(2) For every g, h ∈ G, if g < h then h−1 < g−1.
(3) For every g, h ∈ G, if g < gh then g < hg.
(4) If g1 < h1 and g2 < h2 then g1g2 < h1h2.

Problem 1.30. Show that the Klein bottle group discussed above is isomorphic
with the group 〈a, b ; a2 = b2〉. Define an explicit function h : 〈a, b ; a2 = b2〉 →
〈x, y : xyx−1 = y−1〉 by assigning h(a) and h(b) expressions as words in x and
y and show that the relation a2 = b2 in the domain implies xyx−1 = y−1 in the
range, so that h is a homomorphism. Similarly define a homomorphism in the other
direction and verify that it is inverse to h.

Another way of seeing this isomorphism is to observe that the Klein bottle
is the union of two Möbius bands, glued along their boundaries, and apply the
theorem of Seifert and Van Kampen.

Problem 1.31. Show that the Klein bottle group does not have unique roots.
Indeed, we have a 6= b (why?) but a2 = b2. This gives another proof that it is not
bi-orderable.

1.5. Topology and the spaces of orderings

It is time for topology to enter the picture. We recall that a topological space
is a set X and a collection of subsets of X, called open sets, for which finite in-
tersections and arbitrary unions of open sets are open. The space X itself and the
empty set ∅ are always considered open. A subset is closed if its complement is
open. Any subset A of X inherits a topology from a topology on X by taking sets
of the form A ∩ U , where U is an open subset of X, to be open in A. The discrete
topology on a set is the one in which every subset is open.

An open covering of a space is a collection of open sets whose union is the whole
space. A space is compact if every open covering has a finite subcollection whose
union is the space. A basis for a topology on X is a collection B of subsets of X
such that the open sets are exactly all unions of sets in B.

1.5.1. Topology on the power set. For any set X, one may consider the
collection of all its subsets—that is, its power set—often denoted P(X) or 2X .
This latter notation indicates that the power set may be identified with the set
of all functions X → {0, 1} (using von Neumann’s definition 2 := {0, 1}), via the
characteristic function χA : X → {0, 1} associated to a subset A ⊂ X defined by

χA(x) =

{
1 if x ∈ A,
0 if x /∈ A.

The set 2X is a special case of a product space: one gives {0, 1} the discrete
topology, and 2X is considered the product of copies of {0, 1} indexed by the set
X. The product topology is the the smallest topology on the set 2X such that for
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each x ∈ X the sets {f ∈ 2X : f(x) = 0} and {f ∈ 2X : f(x) = 1} are open. In
other notation, the subsets of P(X) of the form

Ux = {A ⊂ X : x ∈ A} and U cx = {A ⊂ X : x /∈ A}
are open in the “Tychonoff” topology on the power set. Note that the sets Ux and
U cx are also closed, as they are each other’s complement. A basis for the topology
can be gotten by taking finite intersections of various Ux and U cx. A famous theorem
of Tychonoff asserts that an arbitrary product of compact spaces is again compact.
Since the space {0, 1} is compact, we conclude:

Theorem 1.32. The power set P(X) of any set X, with the Tychonoff topology,
is compact.

Problem 1.33. A space is said to be totally disconnected if for each pair of
points, there is a set which is both closed and open and which contains one of the
points and not the other. Show that P(X), with the Tychonoff topology, is totally
disconnected.

If X is finite, then so is 2X and the Tychonoff topology is just the discrete
topology. If X is countably infinite, then 2X is homeomorphic to the Cantor space
obtained by deleting middle thirds successively of the interval [0, 1]. In particular,
the Tychonoff topology on P(X) is metrizable when X is countable. A useful
characterization of the Cantor space is that any nonempty compact metric space
which is totally disconnected will be homeomorphic with the Cantor space if and
only if it has no isolated points. A point is isolated if it has an open neighborhood
disjoint from the rest of the space. See [44, Corollary 2.98] for details.

Problem 1.34. If A ⊂ X is a fixed subset, there is a natural inclusion P(A) ⊂
P(X). Show that P(A) is a closed subset.

Problem 1.35. Consider the complementation function C : P(X)→ P(X) on
the power set of the set X defined by C(Y ) = X \ Y . Show that C is a fixed-point
free involution—that is, C is a homeomorphism of P(X) with C2 the identity map
and C(Y ) 6= Y for all Y ∈ P(X).

Example 1.36. Let G be a group and define S(G) to be the collection of all
sub-semigroups of G. That is, S(G) = {S ⊂ G : g, h ∈ S =⇒ gh ∈ S}. Note that
S(G) ⊂ P(G). We will argue that S(G) is in fact a closed subset of P(G). Consider
the complement P(G) \S(G). A subset Y of X belongs to P(G) \S(G) if and only
if there exist g, h ∈ Y with gh /∈ Y . Therefore

P(G) \ S(G) =
⋃

g,h∈G

(Ug ∩ Uh ∩ U cgh).

Each term in the parentheses is an open set, by definition, and therefore so is the
intersection of the three, and so P(G)\S(G) is a union of open sets. It follows that
S(G) is closed.

1.5.2. The spaces of orderings. In this section we will show how to topolo-
gize the set of all orderings of a group, so as to make a compact space of orderings.

Definition 1.37. The space of left-orderings of a group G, denoted LO(G),
is the collection of all subsets P ⊂ G such that (1) P is a sub-semigroup, (2)
P ∩ P−1 = ∅ and (3) P ∪ P−1 = G \ {1}.
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Problem 1.38. Show that LO(G) is a closed subset of P(G \ {1}) and of
P(G), and is therefore a compact and totally disconnected space (with the subspace
topology).

Problem 1.39. Suppose < is a left-invariant ordering of the group G, and
suppose we have a finite string of inequalities g1 < g2 < · · · < gn which hold. Show
that the set of all left-orderings in which all these inequalities hold forms an open
neighborhood of < in LO(G). The set of all such neighborhoods is a basis for the
topology of LO(G). Equivalently, a basic open set in LO(G) consists of all orderings
in which some specified finite set of elements of G are all positive.

In particular, an ordering of G is isolated in LO(G) if it is the only ordering
satisfying some finite set of inequalities. This property is also known as “finitely
determined” in the literature. Some groups G have isolated points in LO(G), while
others do not, as we will see in Chapter 10.

Similarly, we can define the set O(G) of bi-invariant orderings on the group G
to be the collection of subsets P ⊂ G satisfying (1), (2) and (3) above; and also
g−1Pg ⊂ P.

Problem 1.40. Show that O(G) is a closed subset of LO(G), so it is also a
compact totally disconnected space.

To our knowledge, this definition of LO(G) first appeared in [101]. We will
discuss the structure of LO(G), some of Sikora’s results and other applications in
greater detail in Chapter 10.

Problem 1.41. Suppose a countable left-orderable group G has its non-identity
elements enumerated, so G \ {1} = {g1, g2, . . . }. If < and <′ are two left-orderings
of G, define

d(<,<′) = 2−n,

where n is the first index at which < and <′ differ on gn (i.e. either 1 < gn
and gn <

′ 1 or else 1 <′ gn and gn < 1) In other words, gn is in the symmetric
difference of their respective positive cones. Show that this really is a metric (the
triangle inequality is the only nontrivial part). Moreover, verify that the topology
generated by this metric is the Tychonoff topology.

1.6. Testing for orderability

Suppose we wish to determine if a given group G is left-orderable. Consider a
set S of generators of G, which may be infinite. That is, each g ∈ G may be written
as a finite product of elements of S and their inverses. The length l(g) of a group
element (relative to the choice of generators) is the smallest integer k such that

g = gε11 · · · g
εk
k

where each gi ∈ S and εi = ±1. Let Gk denote the set of all elements of G of length
at most k. If S is finite, Gk is also a finite set, which includes the identity (length
zero) and also is invariant under taking inverses. It can be regarded as the k-ball
of the Cayley graph of G, relative to the given generators.

Now let us define a subset Q of Gk to be a proper k-partition if (1) whenever
g, h ∈ Q and gh ∈ Gk then gh ∈ Q, (2) Q ∩Q−1 = ∅ and (3) Q ∪Q−1 = Gk \ {1}.

Notice that if P is a positive cone (of a left-ordering) of G, then P ∩ Gk is a
proper k-partition. So the following is clear:
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Proposition 1.42. Suppose G is a group with generating set S, with respect
to which there is no proper k-partition of Gk for some positive integer k. Then G
is not left-orderable.

Perhaps surprisingly, there is a converse.

Theorem 1.43. Suppose G is generated by S ⊂ G with respect to which, for
all k ≥ 1, there is a proper k-partition of Gk. Then G is left-orderable.

Proof. We will prove this using compactness of P(G). Consider the set Pk
of all subsets of G whose intersection with Gk is a proper k-partition. One argues
as usual that Pk is a closed subset of P(G), and by hypothesis Pk is nonempty.
Note also that for all k we have Pk+1 ⊂ Pk. Thus the Pk form a nested descending
sequence of nonempty compact subsets of P(X). We conclude that

∞⋂
k=1

Pk 6= ∅.

Also observing that if g, h belong to Gk then gh is in G2k, we see that if
P ∈ ∩∞k=1Pk then P ∈ LO(G) and we conclude that in fact

LO(G) =

∞⋂
k=1

Pk 6= ∅,

completing the proof.

In the case of a finitely generated group, it is a finite task to check whether
or not there exists a proper k-partition of Gk for a particular fixed k. If one can
decide the word problem algorithmically for G (with given generators), then there
is an algorithm to decide whether a proper k-partition exists. This means that
if a finitely-generated group is not left-orderable, then the algorithm will discover
that fact in finite time (although one does not know when!) Moreover, one can
design the algorithm to supply a proof of non-left-orderability if it finds a Gk
having no proper partition. On the other hand, if the group under scrutiny is left-
orderable, the algorithm will never end. An example of such an algorithm, due to
Nathan Dunfield, is described in [14] and is available from his website. In [14] this
algorithm was used to discover Example 5.11, showing a certain torsion-free group
(the fundamental group of the Weeks manifold) is not left-orderable.

Theorem 1.44. A group is left-orderable if and only if each of its finitely-
generated subgroups is left-orderable.

The “only if” part is trivial. The proof in the other direction will use the follow-
ing version of compactness. A collection of sets is said to have the finite intersection
property if every finite subcollection of the sets has a nonempty intersection.

Problem 1.45. A topological space is compact if and only if every collection of
closed subsets with the finite intersection property has a nonempty total intersection.

To prove the nontrivial part of Theorem 1.44, consider any finite subset F of
the given group G and let 〈F 〉 denote the subgroup of G generated by F . Define

Q(F ) = {Q ⊂ G : Q ∩ 〈F 〉 is a positive cone for 〈F 〉}
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For each finite F ⊂ G, Q(F ) is a closed subset of P(G). The family of all Q(F ), for
finite F ⊂ G, is a collection of closed sets which has the finite intersection property,
because

Q(F1 ∪ F2 ∪ · · · ∪ Fn) ⊂ Q(F1) ∩Q(F2) ∩ · · · ∩ Q(Fn).

By compactness,
⋂
F⊂G finiteQ(F ) 6= ∅.

Problem 1.46. Verify that any element of
⋂
F⊂G finiteQ(F ) is a left-ordering

of G, completing the proof. In fact⋂
F⊂G finite

Q(F ) = LO(G).

Theorem 1.47. An abelian group G is bi-orderable if and only if it is torsion-
free.

Proof. We need only show that torsion-free abelian groups are left-orderable
(which in this case is equivalent to bi-orderable). But any finitely generated sub-
group is isomorphic to Zn for some n, which we have already seen to be bi-orderable
(Example 1.7). The result follows from Theorem 1.44.

1.7. Characterization of left-orderable groups

Following [23], we have a number of characterizations of left-orderability of a
group G. If X ⊂ G, we let S(X) denote the semigroup generated by X, that is
all elements of G expressible as (nonempty) products of elements of X (no inverses
allowed).

Theorem 1.48. A group G can be left-ordered if and only if for every finite
subset {x1, . . . , xn} of G which does not contain the identity, there exist εi = ±1
such that 1 6∈ S({xε11 , . . . , xεnn }).

One direction is clear, for if < is a left-ordering of G, just choose εi so that xε1i
is greater than the identity. For the converse, by Theorem 1.44 we may assume that
G is finitely generated, and by Theorem 1.43 we need only show that each k-ball
Gk, with respect to a fixed finite generating set, has a proper k-partition. To do
this, let {x1, . . . , xn} denote the entire set Gk \ {1}, and choose εi = ±1 such that
1 6∈ S({xε11 , . . . , xεnn }).

Problem 1.49. Show that the set Gk∩S({xε11 , . . . , xεnn }) is a proper k-partition
of Gk, completing the proof of Theorem 1.48.

Another characterization of left-orderability is due to Burns and Hale [12].

Theorem 1.50 (Burns-Hale). A group G is left-orderable if and only if for
every finitely-generated subgroup H 6= {1} of G, there exists a left-orderable group
L and a nontrivial homomorphism H → L.

Proof. One direction is obvious. To prove the other direction, assume the
subgroup condition. According to Theorem 1.48, the result will follow if one can
show:

Claim: For every finite subset {x1, . . . , xn} of G\{1} , there exist εi = ±1 such
that 1 6∈ S(xε11 , . . . , x

εn
n ).
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We will establish this claim by induction on n. It is certainly true for n = 1,
for S(x1) cannot contain the identity unless x1 has finite order, which is impossible
since the cyclic subgroup 〈x1〉 must map nontrivially to a left-orderable group.

Next assume the claim is true for all finite subsets of G \ {1} having fewer
than n elements, and consider {x1, . . . , xn} ⊂ G \ {1}. By hypothesis, there is a
nontrivial homomorphism

h : 〈x1, . . . , xn〉 → L

where (L,≺) is a left-ordered group. Not all the xi are in the kernel since the
homomorphism is nontrivial, so we may assume they are numbered so that

h(xi)

{
6= 1 if i = 1, . . . , r,

= 1 if r < i ≤ n.

Now choose ε1, . . . , εr so that 1 ≺ h(xεii ) in L for i = 1, . . . , r. For i > r, the
induction hypothesis allows us to choose εi = ±1 so that 1 6∈ S(x

εr+1

r+1 , . . . , x
εn
n ).

We now check that 1 6∈ S(xε11 , . . . , x
εn
n ) by contradiction. Suppose that 1 is a

product of some of the xεii . If all the i are greater than r, this is impossible, as
1 6∈ S(x

εr+1

r+1 , . . . , x
εn
n ). On the other hand if some i is less than or equal to r, we see

that h must send the product to an element strictly greater than the identity in L,
again a contradiction.

A group is said to be indicable if it has the group of integers Z as a quotient, and
locally indicable if each of its nontrivial finitely-generated subgroups is indicable.
This notion was introduced by Higman [39] to study zero divisors and units in
group rings (see Section 1.8).

Corollary 1.51. Locally indicable groups are left-orderable.

Corollary 1.52. Suppose G is a group which has a (finite or infinite) family
of normal subgroups {Gα} such that ∩αGα = {1}. If all the factor groups G/Gα
are left-orderable, then G is left-orderable.

Proof. If H is a finitely generated nontrivial subgroup of G, one can choose
α for which H \ Gα is nonempty. Then the composition of homomorphisms H →
G→ G/Gα is a nontrivial homomorphism of H to a left-orderable group.

Problem 1.53. Show that each of the following conditions on a group G is
equivalent to left-orderability:

(1) For each element g 6= 1 in G, there exists a subsemigroup Sg of G which
contains g but not 1 and such that G \ Sg is also a semigroup.

(2) For each finite subset x1, . . . , xn of G, the intersection of the 2n subsemi-
groups S(1, xε11 , . . . , x

εn
n ) is equal to {1}, where the εi are ±1.

(3) There exists a set S of subsemigroups of G whose intersection is {1} and
such that for every g ∈ G and S ∈ S, either g ∈ S or g−1 ∈ S.

See [23] if you get stuck, but note that he uses the right-ordering convention.

A subset Q of a group G is called a partial left-order if it is a subsemigroup
(Q · Q ⊂ Q) such that Q ∩ Q−1 = ∅. Q can be regarded as the positive cone of
a left-invariant partial order of the group. In particular, Q corresponds to a total
left-order if and only if G \ {1} = Q∪Q−1. If Q and Q′ are partial left-orders such
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that Q ⊂ Q′, then Q′ is called an extension of Q. The following is a useful criterion
for a partial order to extend to a total one.

Problem 1.54. A partial left-order Q on G has an extension to a total left-
order if and only if whenever {x1, . . . , xn} is a finite subset of G which does not
contain the identity 1 of G, there exist εi = ±1 such that 1 6∈ S(Q∪{xε11 , . . . , xεnn }).

1.8. Group rings and zero divisors

We will now discuss one of the algebraic reasons it is worth knowing that a
group is left-orderable.

If R is a ring with identity and G is a group (written multiplicatively), then the
group ring RG is defined to be the free left R-module generated by the elements
of G, endowed with a natural multiplication analogous to products of polynomials.
That is, a typical element of RG is a finite formal linear combination

m∑
i=1

rigi

with ri ∈ R and gi ∈ G. The product is defined by the formula

(1.1)

(
m∑
i=1

rigi

) n∑
j=1

sjhj

 =

m∑
i=1

n∑
j=1

risj(gihj)

Of course, on the right-hand side of Equation (1.1), cancellations may be possible,
and this leads to some mischief, as the example below illustrates. If 1 is the identity
of G, then the group ring element r1 is customarily denoted simply as r, and likewise
for the ring identity, also denoted by 1, 1g may be abbreviated as g.

Group rings (known as group algebras if R is a field) arise naturally in repre-
sentation theory, algebraic topology, Galois theory, etc. An important problem is
the so-called zero-divisor conjecture, which dates back at least to the 1940’s, often
attributed to Kaplansky. It remains unsolved even for the case R = Z. Recall
that an element α 6= 0 of a ring is called a zero divisor if there exists another ring
element β 6= 0 such that αβ = 0.

Conjecture 1.55 (Zero divisor conjecture). If R is a ring without zero divisors
and G is a torsion-free group, then RG has no zero divisors.

One of the strongest reasons for knowing whether a group is orderable is that the
zero divisor conjecture is true for left-orderable groups. Before proving this, let us
discuss by example how zero divisors, and nontrivial units (elements with inverses),
can arise in group rings. If r is an invertible element of R and g an arbitrary element
of G, then the “monomial” rg is clearly a unit of RG: (rg)(r−1g−1) = 1. Such a
unit is called a trivial unit of RG.

Example 1.56. Consider the ring of integers R = Z and the cyclic group of
order five, G = 〈x | x5 = 1〉. Define the following elements of RG:

α = 1 + x+ x2 + x3 + x4, β = 1− x, γ = 1− x2 − x3, δ = 1− x− x4

Problem 1.57. Verify that αβ = 0 and γδ = 1. Therefore, the group ring in
this example has zero divisors and nontrivial units as well.
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The existence of nontrivial units in group rings, like the zero divisor problem,
is a notoriously difficult problem in algebra. However, for left-orderable groups the
answer is straightforward.

Theorem 1.58. If R is a ring without zero divisors and G is a left-orderable
group, then the group ring RG does not have zero divisors or nontrivial units.

Proof. Consider a product, as in Equation (1.1), where we assume that the ri
and sj are all nonzero, the gi are distinct and the hj are written in strictly ascending
order, with respect to a given left-ordering of G. At least one of the group elements
gihj on the right-hand side of (1.1) is minimal in the left-ordering. If j > 1 we have,
by left-invariance, that gih1 < gihj and gihj is not minimal. Therefore we must
have j = 1. On the other hand, since we are in a group and the gi are distinct,
we have that gih1 6= gkh1 for any k 6= i. We have established that there is exactly
one minimal term on the right-hand side of (1.1), and similarly there is exactly one
maximal term. It follows that they survive any cancellation, and so the right-hand
side cannot be zero (because ris1 6= 0). Thus RG has no zero divisors. If one of n
or m is greater than one, there are at least two terms on the right-hand side of (1.1)
which do not cancel, so the product cannot equal 1. This implies that all units of
RG are trivial.

1.9. Torsion-free groups which are not left-orderable

Left-orderable groups are torsion-free, but there are many examples to show
the converse is far from true. One of the simplest examples, which has appeared
several times in the literature, is the following.

Example 1.59. We will consider a crystallographic group G which is torsion-
free but not left-orderable. Specifically consider the group G with generators a, b, c
acting on R3 with coordinates (x, y, z) by the rigid motions:

a(x, y, z) = (x+ 1, 1− y,−z)

b(x, y, z) = (−x, y + 1, 1− z)
c(x, y, z) = (1− x,−y, z + 1)

One can easily check the relations a2ba2 = b, b2ab2 = a and abc = id. By
the last relation we see that one generator may be eliminated. In fact G has the
presentation G = 〈a, b | a2ba2 = b, b2ab2 = a〉.

Problem 1.60. Check the relations cited above. Argue that the group G is
torsion-free.

Problem 1.61. Argue that G is not left-orderable as follows. First show that
for all choices of m,n ∈ {−1,+1} one has a2mbna2m = bn and b2namb2n = am.
Then argue that

(ambn)2(bnam)2 = amb−nb2namb2nambnam

= amb−na2mbna2ma−m

= amb−nbna−m = 1

Conclude that if G were left-orderable, all choices of sign for a and b would lead to
a contradiction.
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Figure 2. The torus as a rectangle with opposite sides identified,
which we can subdivide into two Klein bottles as shown.

Problem 1.62. Show that the subgroup A = 〈a2, b2, c2〉 is generated by shifts
(by even integral amounts) in the directions of the coordinate axes, and so is a free
abelian group of rank 3. Moreover A is normal in G and of finite index. Therefore
G is virtually bi-orderable, in the sense that a finite index subgroup is bi-orderable.

Next we will construct an infinite family of examples. Consider the Klein bottle
group K = 〈a, b | a2 = b2〉.

Problem 1.63. Verify that a2 and ab commute, that the subgroup H = 〈a2, ab〉
is an index two subgroup of K and that H ∼= Z2.

In fact, H can be regarded as the fundamental group of the 2-dimensional torus
which double-covers the Klein bottle as in Figure 2, the so-called oriented double
cover.

Alternatively, we can realize K as the 2-dimensional crystallographic group
generated by the glide reflections

a(x, y) = (x+ 1,−y) b(x, y) = (x+ 1, 1− y)

and H as the subgroup of orientation-preserving motions.
Now take two copies K1 and K2 of the Klein bottle group, and amalgamate

them along their corresponding subgroups H1 and H2. An isomorphism φ : H1 →
H2 is given by a 2× 2 matrix (using the bases {a2

i , aibi})

φ ∼
(
p q
r s

)
with determinant ±1. We take this to mean, in multiplicative notation,

φ(a2
1) = (a2

2)p(a2b2)q; φ(a1b1) = (a2
2)r(a2b2)s

This identification defines an amalgamated free product

Gφ := K1 ∗φ K2

which has the presentation

Gφ = 〈a1, b1, a2, b2 | a2
1 = b21, a

2
2 = b22, a

2
1 = (a2

2)p(a2b2)q, a1b1 = (a2
2)r(a2b2)s〉

The groupsGφ are torsion-free, since they are amalgamated products of torsion-
free (in fact left-orderable) groups. This can be seen by considering the normal
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form for elements of an amalgamated free product, see for example [98], Section
1.3, Corollary 2.

Example 1.64. Suppose p, q ≥ 0 and r, s ≤ 0 (or vice-versa). Then Gφ is not
left-orderable.

To see this, suppose for contradiction that Gφ is left-orderable. Then the first
relation implies that a1 and b1 must have the same sign (either both are positive or
both are negative) and the second implies a2 and b2 also have the same sign. The
third relation implies that a1 (and hence b1) has the same sign as a2 and b2 (note
that one of p or q must be strictly positive). But then the last relation implies a1b1
has the opposite sign as a2 and b2, the desired contradiction.

Problem 1.65. Calculate that the abelianization of Gφ is a finite group of
order 16|p + q − r − s|, and therefore this construction provides infinitely many
non-isomorphic groups which are torsion-free but not left-orderable.

It will be seen later that the Gφ are the fundamental groups of an interesting
class of 3-manifolds: the union of two twisted I-bundles over the Klein bottle.
Further examples of torsion-free groups which are not left-orderable are discussed
in Chapter 5.

Finally, we mention a useful result, due independently to Brodskii [11] and
Howie [47]. See also [48] for a simpler proof. The difficult direction is to show that
torsion-free implies locally indicable.

Theorem 1.66. If G is a group which has a presentation with a single relation,
the following are equivalent:

(1) G is torsion-free
(2) G is locally indicable
(3) G is left-orderable.

Note that the examples of torsion-free non-left-orderable groups described above
have two or more defining relations.

We end this chapter with an open question. Chehata [18] constructed a bi-
orderable group which is simple. But the example is uncountable, and therefore not
finitely generated. In fact, every bi-orderable simple group must be infinitely gen-
erated, because finitely generated bi-orderable groups have infinite abelianization
(for a proof of this fact, see Theorem 2.19).

Question 1.67. Is there a finitely generated left-orderable simple group?





CHAPTER 2

Hölder’s theorem, convex subgroups and dynamics

In this chapter we introduce some of the essential dynamical properties of left-
orderings of groups.

2.1. Hölder’s Theorem

A left-ordering < of a group G is called Archimedean if for every pair of positive
elements g, h ∈ G there exists n > 0 such that h < gn. For example, the standard
orderings of (Q,+) and (R,+) are Archimedean.

Problem 2.1. Verify that the orderings of Z2 constructed in Example 1.7 are
Archimedean, whenever the vector ~v ∈ R2 has irrational slope. On the other hand,
the lexicographic ordering is not Archimedian.

There is a reason why these few examples of Archimedean ordered groups are
rather simple. It turns out that all Archimedian left-orderings must be bi-orderings,
from which we can prove that Archimedean ordered groups are abelian. We begin
with a proof of these two facts.

Lemma 2.2. [23, Theorem 3.8] Every Archimedean left-ordering is a bi-ordering.

Proof. Let P denote the positive cone of an Archimedean left-ordering < of a
group G. In order to show that < is a bi-ordering, we must show that g−1Pg ⊂ P
for all g ∈ G.

So, let h ∈ P and g ∈ G, and first we will suppose that g is positive. Because the
ordering is Archimedean there exists n > 0 such that g < hn. Therefore 1 < g−1hn,
and so 1 < g−1hng since it is a product of the positive elements g−1hn and g. Now
1 < g−1hg since its n-th power is positive, and we conclude that g−1hg ∈ P for all
h ∈ P . In other words, g−1Pg ⊂ P .

In the second case where g is negative and h ∈ P , suppose that g−1hg /∈ P and
we’ll arrive at a contradiction. Since g−1hg /∈ P we have

1 < (g−1hg)−1 = g−1h−1g,

and by the previous paragraph, conjugation of this element by the positive element
g−1 will give a positive element. In other words

1 < g(g−1h−1g)g−1 = h−1,

a contradiction. Thus g−1Pg ⊂ P for negative g ∈ G as well.

Problem 2.3. Show that in an Archimedean ordered group, for every noniden-
tity element g and every h ∈ G there exists n ∈ Z such that gn ≤ h < gn+1.

Lemma 2.4. Every Archimedean left-ordered group is abelian.

17



18 2. HÖLDER’S THEOREM, CONVEX SUBGROUPS AND DYNAMICS

Proof: By the above, the ordering is bi-invariant. We consider two cases.
Case 1: The positive cone P has a least element p. Then we claim that the

infinite cyclic subgroup 〈p〉 is the whole of G. For if g ∈ G \ 〈p〉, there exists n such
that pn < g < pn+1 and therefore 1 < p−ng < p, contradicting minimality of p. So
G ∼= Z in this case, and the theorem follows.

Case 2: P does not have a least element. By way of contradiction, suppose
g, h ∈ G do not commute. Without loss of generality, we may assume g and h and
their commutator ghg−1h−1 are all positive. Lemma 2.5 guarantees the existence
of x > 1 in G such that 1 < x2 < ghg−1h−1. Using the Archimedean property,
there exist integers m,n such that xm ≤ g < xm+1 and xn ≤ h < xn+1. Then
g−1 ≤ x−m and h−1 ≤ x−n. Multiplying the appropriate inequalities implies
ghg−1h−1 < xm+1+n+1−m−n = x2, a contradiction.

Lemma 2.5. If G is bi-ordered and does not have a least positive element, then
given p > 1 there exists q > 1 in G such that 1 < q2 < p.

Proof: Let p > r > s > 1, and consider rs−1 > 1. If (rs−1)2 ≥ r, then
s−1rs−1 ≥ 1 and r ≥ s2, so we can choose q = s. Otherwise, let q = rs−1.

In the same sense that Homeo+(R) is universal for countable left-orderable
groups (see Theorem 2.23), Hölder’s theorem tells us that the group (R,+) is uni-
versal for Archimedean ordered groups.

Theorem 2.6 (Hölder 1901 , [45]). If G is a group with an Archimedian left-
ordering, then G is isomorphic with a subgroup of the additive reals, by an isomor-
phism under which the ordering of G corresponds to the usual order of R.

Proof. We first fix a nonidentity element f ∈ G and note that any homo-
morphism φ : G → (R,+) can be post-composed with multiplication by the real
number 1

φ(f) in order to produce a homomorphism with φ(f) = 1. So if we wish to

show that there is a homomorphism φ : G→ (R,+), there is no harm in beginning
with φ(f) = 1.

Now for each g ∈ G and n ∈ Z, an application of the Archimedean property
yields a corresponding integer an ∈ Z such that

fan ≤ gn < fan+1

Thus if we are to succeed in creating an order-preserving homomorphism φ : G→
(R,+) with φ(f) = 1, these inequalities give

an ≤ nφ(g) < an + 1

for all n. In particular, it means that we are forced to set

φ(g) = lim
n→∞

an
n

whenever the limit exists.
It turns out that this limit exists for all g ∈ G, so no matter our approach

this must be the value that we assign to φ(g) once we fix φ(f) = 1. However
proving convergence of the sequence {an/n} is a bit tricker than if we pass to the
subsequence

φk(g) =
a2k

2k
,

and proceed as in the following exercise.
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Problem 2.7. Verify that |φk+1(g)−φk(g)| ≤ 1/2k, and conclude that {φk(g)}
is a Cauchy sequence. Hence there is a limit.

Define

φ(g) = lim
k→∞

φk(g)

and verify (here the commutativity of G is needed) that for any g, h ∈ G,

|φk(gh)− φk(g)− φk(h)| ≤ 1/2k.

Conclude that φ is a homomorphism.
Finally, verify that if g > 1 in G, then φ(g) > 0 in R. Conclude both that φ is

injective and order-preserving.

Problem 2.8. Recall the bi-ordering of Z2 introduced in Example 1.7. For
~v ∈ R2 with irrational slope, and any two vectors ~m = (m1,m2), ~n = (n1, n2) ∈ Z2,
we have

~m < ~n ⇐⇒ m1v1 +m2v2 < n1v1 + n2v2.

Define a map φ : Z2 → (R,+) by

φ(~m) =
~m · ~v
||~v||

,

note that this is the formula for orthogonal projection onto ~v. Verify that φ is order
preserving and injective.

2.2. Convex subgroups

Suppose G is a left-ordered group with ordering <. A subset C ⊂ G is convex
relative to < if for all g, h ∈ C and f ∈ G, the implication g < f < h ⇒ f ∈ C
holds. A subset C ⊂ G is relatively convex if there exists an ordering of G relative
to which C is convex. We will be primarily interested in the case where C is a
subgroup of G, in which case C is called a convex subgroup or a relatively convex
subgroup of G.

Problem 2.9. Let G be a group with left-ordering <, and suppose that C and
D are subgroups that are convex relative to <. Show that either C ⊂ D, or D ⊂ C.

The conclusion of Problem 2.9 is often stated simply as “the convex subgroups
of G with ordering < are linearly ordered by inclusion.” If C ⊂ D are convex,
then the pair (C,D) is called a convex jump if there is no convex subgroup strictly
between them.

Problem 2.10. Let G be a left-ordered group with convex subgroup C. Given
an element g ∈ G and integer n 6= 0, show that gn ∈ C implies g ∈ C.

Problem 2.11. Show that an Archimedean ordered group has no convex sub-
groups other than the trivial ones: the whole group and {1}.

Problem 2.12. Show that the orderings of Z2 defined in Example 1.7 have a
nontrivial convex subgroup whenever the vector ~v has rational slope.
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Convex subgroups of a left-orderable group are closely related to orderability
of its quotients. If G→ H is a homomorphism from a left-orderable group G onto a
left-orderable group H, then its kernel is relatively convex. Conversely if the kernel
of some homomorphism φ : G → H is relatively convex then the image φ(G) is
left-orderable. This is essentially the content of Problem 1.8, reworded using our
new definitions.

By using the notion of convexity of a subgroup, we can consider subgroups
C ⊂ G that are not normal in G, but whose left cosets nonetheless admit an
ordering that is invariant under the left action of G.

Problem 2.13. Prove the following generalization of Problem 1.8, which cre-
ated lexicographic orderings via short exact sequences: Suppose that C is a subgroup
of G, denote the set of left cosets {gC}g∈G by G/C. The subgroup C is relatively
convex in G if and only if there exists an ordering ≺ of the cosets G/C that is
invariant under left multiplication by G, i.e. gC ≺ hC implies fgC ≺ fhC for all
f, g, h ∈ G.

A consequence of the previous problem is that whenever a subgroup C is convex
in a left-ordering of G, we can choose a different left-ordering of C while keeping the
same ordering of the left cosets G/C. This gives a way of making new left-orderings
of G.

Problem 2.14. Suppose that C is a normal, convex subgroup of a left-ordered
group G with ordering <. Show that a subgroup H of G satisfying C ⊂ H ⊂ G is
convex relative to the ordering < of G if and only of H/C is convex in G/C relative
to the natural quotient ordering.

Problem 2.15. Fix an ordering of Zn. Show that there can be at most n − 1
proper, nontrivial subgroups of Zn that are convex relative to this ordering.

Recall that a (left) action of a group G on a set X is a binary operation
G×X → X which satisfies 1x = x and (gh)x = g(hx) for all g, h ∈ G, x ∈ X. The
stabilizer of x ∈ X under the action is the subgroup {g ∈ G | gx = x}. One says
G acts effectively if whenever gx = x for all x ∈ X, then g = 1. If X is linearly
ordered by <, then the action is order-preserving if x < y implies gx < gy.

Problem 2.16. Suppose that G acts effectively (on the left) on a linearly or-
dered set X by order-preserving bijections. For a given x0 ∈ X, choose a well-
ordering ≺ of X for which x0 is the smallest element. Construct a left-ordering
< of G as in the proof of Example 1.11. Show that the stabilizer of x0 is convex
relative to the ordering < of G.

Therefore the stabilizer of each x ∈ X is a relatively convex subgroup of G.

Problem 2.17. Fix a left-ordering < of a group G. Show that an arbitrary
union of convex subgroups of G is a convex subgroup, and an arbitrary intersection
of convex subgroups of G is a convex subgroup.

In fact when considering the intersection of convex subgroups, we do not need
that they all be convex relative to the same left-ordering of the group. It suffices
that each subgroup be relatively convex in order to conclude that their intersection
is also relatively convex, though the proof is trickier than the solution to Problem
2.17.
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Proposition 2.18. An arbitrary intersection of relatively convex subgroups of
a left-orderable group is a relatively convex subgroup.

Proof. Let {Ci}i∈I be a family of relatively convex subgroups of a group G,
assume that for each i ∈ I the subgroup Ci is convex relative to the left-ordering
<i. By Problem 2.13, each set of left cosets G/Ci admits an ordering ≺i that is
invariant under the left action of G. Fix an arbitrary well-ordering of the index
set I, and use the well-ordering of I to define a lexicographic ordering of product
Πi∈IG/Ci, which we will denote by ≺. Since ≺ restricts to the ordering ≺i on each
factor G/Ci, it is preserved by the left-action of G on Πi∈IG/Ci.

We would like to use the left action of G on Πi∈IG/Ci to create a left-ordering
of G, but the action may not be effective. Therefore we correct this problem as
follows. Fix a left-ordering < of G, and order the union

(Πi∈IG/Ci) ∪G

by ordering Πi∈IG/Ci using ≺, ordering G using <, and declaring that every ele-
ment of G is greater than every element of Πi∈IG/Ci. The result is an effective,
order-preserving action of G on the totally ordered set (Πi∈IG/Ci)∪G. The stabi-
lizer of the element (Ci)i∈I ∈ Πi∈IG/Ci is the intersection

⋂
i∈I Ci, so by Problem

2.16, the intersection is relatively convex. That it is a subgroup is clear as any
intersection of subgroups is a subgroup.

2.3. Bi-orderable groups are locally indicable

With these preparations, we can argue that all bi-orderable groups are locally
indicable: Consider a finitely generated bi-ordered group G with generators which
we may take to be positive and ordered 1 < g1 < g2 < · · · < gn. Let C be the
maximal convex subgroup of G which does not contain the largest generator gn, that
is, C is the union of all convex subgroups not containing gn. Clearly the only convex
subgroup which properly contains C is G itself. Since bi-orderings are conjugation
invariant, so is the convex subgroup C, meaning that C is normal and G/C inherits
a bi-ordering. We wish to argue that the ordering of G/C is Archimedean, so for
contradiction suppose it is not. Then there is an element g ∈ G/C so that the set

H = {h ∈ G/C | there exists k ∈ Z such that g−k < h < gk}

is a proper convex subgroup of G/C. By Problem 2.14, H corresponds to a proper,
convex subgroup D of G which contains C. Since D is proper it cannot contain gn—
but this contradicts maximality of C. Thus we have proved that (C,G) is a convex
jump and G/C is a nontrivial finitely-generated torsion-free abelian group. The
homomorphisms G → G/C → Z establish the following, which had been observed
by Levi [61].

Theorem 2.19. If G is a finitely generated bi-orderable group, then there is a
surjective homomorphism G→ Z.

Corollary 2.20. Bi-orderable groups are locally indicable.

Note that the converse of this corollary is not true. For example the Klein
bottle group is locally indicable, but it is not bi-orderable. Local indicability and
its relationship with orderability is discussed in detail in Chapter 9.
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Problem 2.21. Let G be a finitely generated group with infinite cyclic abelian-
ization generated by the image of t ∈ G. Show that G is bi-orderable if and only if
the conjugation action of t on [G,G] preserves a bi-ordering of [G,G].

2.4. The dynamic realization of a left-ordering

If G is an Archimedean ordered group, then Hölder’s theorem gives an order-
preserving injective homomorphism φ : G → (R,+). Regarding (R,+) as the
subgroup of translations of Homeo+(R), the homomorphism arising from Hölder’s
theorem is a special case of a more general construction that yields a homomorphism
G→ Homeo+(R).

In this section we prove that a countable group G is left-orderable if and only
if there is an embedding G → Homeo+(R); we already saw one direction of this
proof in Chapter 1. We also introduce a standard way of constructing such an
embedding, called the dynamic realization. To begin we recall a classical theorem
due to Cantor.

Theorem 2.22 (Cantor). If S is a countable, totally densely ordered set without
a maximum or minimum element, then there exists an order-preserving bijection
φ : S → Q.

Proof. The argument we will present is known as Cantor’s “back and forth
argument” [50, p. 35–36].

Let {s0, s1, . . .} and {r0, r1, . . .} be enumerations of the set S and the rational
numbers Q respectively. Set S0 = {s0} and R0 = {r0}, and we begin our construc-
tion of the map φ : S → Q by declaring φ(s0) = r0. Now assuming we have defined
an order-preserving bijection φ : Sk → Rk between finite subsets Sk and Rk of S
and Q respectively, we extend φ to an order-preserving bijection between larger
finite subsets according to the following steps.

(1) Choose the smallest i such that si /∈ Sk, and set Sk+1 = Sk∪{si}. Choose
rj ∈ Q \ Rk such that setting φ(si) = rj defines an order-preserving
bijection φ : Sk+1 → Rk ∪ {rj} (such a choice of rj is possible by density
of the ordering of Q). Set Rk+1 = Rk ∪ {rj}.

(2) Choose the smallest j such that rj /∈ Rk+1 and set Rk+2 = Rk+1 ∪ {rj}.
Choose si ∈ S \ Sk+1 such that setting φ−1(rj) = si defines an order-
preserving bijection φ−1 : Rk+2 → Sk+1 ∪ {si} (similar to step 1, this is
possible by density of the ordering of S). Set Sk+2 = Sk+1 ∪ {si}.

(3) Return to step 1, and repeat the process.

This procedure produces a map φ : S → Q which is order-preserving and
injective by construction. The map is also surjective, because after n iterations of
these three steps, rn is sure to be in the image of φ.

Theorem 2.23. Suppose that G is a countable group. Then G is left-orderable
if and only if G is isomorphic to a subgroup of Homeo+(R).

Proof. If G is isomorphic to a subgroup of Homeo+(R), then G is left-
orderable because Homeo+(R) is a left-orderable group (by Example 1.11).

On the other hand, suppose that G is countable and left-orderable, we will
build an injective homomorphism ρ : G → Homeo+(R). Observe that G can be
embedded in the group G × Q, which is also countable, and which can be densely
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left-ordered using the standard lexicographic construction. So, by embedding G
into G×Q if necessary, we can assume that the left-ordering of G is dense.

By Theorem 2.22, there is an order-preserving injective map t : G → R whose
image is Q. For each g ∈ G, define a map ρ(g) : R→ R by first defining its action
on Q according to the rule ρ(g)(t(h)) = t(gh) for all h ∈ G, this action preserves
order because left-multiplication preserves the ordering of G. By Problem 2.24,
this uniquely determines an order-preserving homeomorphism ρ(g) : R → R. This
defines the required homomorphism ρ : G→ Homeo+(R).

Problem 2.24. Suppose that f : Q→ Q is an order-preserving bijection. Show
that f can be uniquely extended to an order-preserving homeomorphism f̄ : R→ R.

Given a group G with a left-ordering <, there is a second construction of an
embedding t : G → R which has become standard in the literature. The action
induced on R by this construction is called the dynamic realization of the left-
ordering <, and it is described as follows.

Fix an enumeration {g0, g1, g2, . . .} of G with g0 = 1, and proceed as follows
to inductively define an order-preserving embedding t : G → R. Begin by setting
t(g0) = 0. If t(g0), . . . , t(gi) have already been defined and gi+1 is either larger or
smaller than all previously embedded elements, then set:

t(gi+1) =

{
max{t(g0), . . . , t(gi)}+ 1 if gi+1 > max{g0, . . . , gi}
min{t(g0), . . . , t(gi)} − 1 if gi+1 < min{g0, . . . , gi}

On the other hand, if there exist j, k ∈ {0, . . . , i} such that gj < gi+1 < gk and
there is no n ∈ {0, . . . , i} such that gj < gn < gk, then set

t(gi+1) =
t(gj) + t(gk)

2
.

The group G acts in an order-preserving way on the set t(G) according to the rule
g(t(h)) = t(gh).

This rule extends to an order-preserving action on the closure t(G). The com-

plement of the set t(G) is a union of open intervals, with the action of every g ∈ G
defined on their endpoints. For every g ∈ G we can extend this action to an order-
preserving homeomorphism ρ(g) by extending the action of g on t(G) affinely on the

complement R \ t(G). With a fair amount of work, one can show that this defines
a faithful representation ρ : G → Homeo+(R). The representation constructed in
this way is the dynamic realization of <. One can recover the original ordering of
G from the dynamic realization by declaring g > 1 if and only if ρ(g)(0) > 0.

Problem 2.25. Let ρ : G → Homeo+(R) denote the dynamical realization
of the left-ordering < of G. Show that Homeo+(R) admits a left-ordering that
extends the natural left-ordering of ρ(G). (Hint: Well-order the reals so that 0 is
the smallest element, and use the construction of Example 1.11)

Since the construction of the dynamic realization involves many choices, for
example a choice of enumeration of G and a choice of order preserving function
t : G → R, it is not unique. The degree to which this construction is unique is
a rather subtle question–we refer the reader to [76] for an investigation of this
question.





CHAPTER 3

Free groups, surface groups and covering spaces

The goal of this chapter is to show that free groups, as well as almost all surface
groups (the exceptions being the projective plane and Klein bottle) are bi-orderable.
We conclude the chapter with an interesting connection between the orderability of
the fundamental group of a space and topological properties of the universal cover.

3.1. Surfaces

By a surface we shall mean a metric space for which each point has a neigh-
bourhood homeomorphic with either R2 or the closed upper half-space R2

+. Unless
otherwise stated, we will assume surfaces to be connected. We include non-compact
surfaces and surfaces with boundary — in both cases the fundamental group is a
free group — and also include non-orientable surfaces. By a surface group we mean
a group isomorphic with the fundamental group π1(Σ) of a surface Σ.

The basic building blocks for closed (i.e. compact without boundary) surfaces
are the sphere S2, the torus T 2 ∼= S1 × S1 and the (real) projective plane P 2.
One can regard P 2 as the quotient of S2 in which antipodal points are identified,
or equivalently, the union of a disk and Möbius band, sewn together along their
boundaries. The connected sum of two closed surfaces is gotten by deleting an
open disk from the interior of each surface, and then sewing the resulting punctured
surfaces together along their boundaries. The connect sum operation is denoted by
‘#’, for example, Figure 1 is the sum T 2#T 2.

Closed surfaces are classified as follows:

• Orientable: S2, T 2, 2T 2 = T 2#T 2, 3T 2 = T 2#T 2#T 2, . . .
• Nonorientable: P 2, 2P 2 = P 2#P 2, 3P 2 = P 2#P 2#P 2, . . .

This allows us to define the genus of a surface Σ by identifying it with one of the
surfaces in the list above: if Σ is either kT 2 or kP 2 then the genus of Σ is k, if
Σ = S2 then its genus is 0.

In fact, the set of surfaces can be regarded as a commutative monoid generated
by T 2 and P 2 (S2 is the identity element) and subject to the famous relation

Figure 1. The connect sum of two tori.
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T 2#P 2 ∼= 3P 2.

They have geometric structures as follows:

• Spherical: S2, P 2

• Euclidean: T 2, 2P 2 = Klein bottle
• Hyperbolic: all the rest.

Problem 3.1. Verify that T 2#P 2 ∼= 3P 2.

It has long been known that the fundamental groups of the closed orientable
surfaces are bi-orderable. One proof, due to Baumslag [4], depends on the fact
that they are residually free,1 and therefore embed in a direct product of free
groups. We will give another proof, which also applies to the nonorientable case.
Baumslag’s argument does not apply to nonorientable surface groups (see [10] for
a discussion). Indeed, Levi [62] had remarked that nonorientable surface groups
are NOT bi-orderable, though they were understood to be left-orderable (with
the obvious exception of the projective plane P 2). The argument went that the
embedded Möbius bands introduced a relation saying that an element is conjugate
to its inverse — in fact this only happens for the Klein bottle (whose group has the
defining relation xyx−1 = y−1) and projective plane (where each element equals
its inverse). This assumption apparently stood until 2001, when it was shown in
[90] that the fundamental groups of the hyperbolic nonorientable surfaces are bi-
orderable after all. The proof presented here is essentially the same as the one in
that paper, where the interested reader may find further details. Before considering
surface groups, we turn to the simpler case of free groups.

3.2. Ordering free groups

The free group with generators x1, x2, . . . , possibly an infinite list, can be re-
garded as the set of equivalence classes of (finite) words in the letters xi and their
formal inverses x−1

i , where words are considered equivalent if one can pass from

one to the other by removing (or inserting) consecutive letters of the form xix
−1
i or

x−1
i xi. The group operation is concatenation and the empty word represents the

identity element.
There are a number of ways to order free groups—in fact for free groups with

more than one generator there are uncountably many. The method we will use
here, following Magnus, has the advantage that one can decide by straightforward
calculation which of two given words is bigger in the ordering.

Let F = F (x1, x2, . . . ) denote the free group on the generators x1, x2, . . . ,
possibly an infinite list. We define the ring

Λ = Z[[X1, X2, . . . ]]

to be the ring of formal power series in the non-commuting variables Xi, one for
each generator of F . If there are infinitely many variables, we only allow expres-
sions involving a finite set of variables to belong to Λ, so that an element of Λ
has only a finite number of terms of a given degree. The advantage of Λ is that
(unlike F ) the variables have no negative exponents and so it is easier to define
an ordering, without having to worry about cancellation problems. Magnus used

1A group G is residually free if for every nonidentity element g ∈ G there is a homomorphism
φ : G→ F onto a free group such that φ(g) 6= 1.
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the following embedding (the Magnus expansion) to argue, among other things,
that the intersection of the lower central series of a free group is just the identity
element.

Define the (multiplicative) homomorphism µ : F → Λ on the generators of F
as follows:

µ(xi) = 1 +Xi

µ(x−1
i ) = 1−Xi +X2

i −X3
i + · · ·

Thus, for example,

µ(x1x
2
2x
−1
1 ) = (1 +X1)(1 +X2)2(1−X1 +X2

1 −X3
1 + · · · )

= 1 + 2X2 + 2X1X2 − 2X2X1 +X2
2 +O(3)(3.1)

The notation O(n) stands for the sum of all terms of total degree n or greater.
We now define an ordering on Λ. First, write elements of Λ with lower degree terms
preceding terms of higher degree. Within a fixed degree, they may be ordered
arbitrarily, but to be definite we will order them lexicographically according to
subscript (as in the example). Now given two elements of Λ, write them in the
standard form, as described above, and order them according to the coefficient of
the first term at which they differ.

For example, (1 + Xi)
p = 1 + pXi + O(2), even for negative p, so that such

expressions are ordered in the same way as their exponents, that is (1 + Xi)
p <

(1 +Xi)
q if and only if p < q.

Lemma 3.2. The homomorphism µ is injective, and embeds F into the group
of units of Λ of the form 1 +O(1).

Proof. We need only verify that the kernel of µ is trivial. Write any non-
identity element w of F in standard form w = xp1i1 x

p2
i2
· · ·xpkik , where ij 6= ij+1 for

each j = 1, . . . , k − 1. From the remark preceding this lemma, we see that µ(w)
has a unique term pXi1Xi2 · · ·Xik , with p = p1 · · · pk, which is the product of the
degree one terms of the factors (1 +Xij )pj . It follows that µ(w) 6= 1.

Our intention is to order F by considering it as a subgroup (via the Magnus
embedding µ) of the (multiplicative) group {1 + O(1)} which lies inside Λ. The
ordering of Λ that we have described is easily seen to be invariant under addition,
but it is certainly not preserved by multiplication by certain terms, for example
−1. However, the following saves the day.

Lemma 3.3. The multiplicative group G = {1 + O(1)} ⊂ Λ is a bi-ordered
group, under the ordering of Λ described above.

Proof. We check that the ordering is preserved by multiplication on the left,
the verification for right-multiplication being similar. Let U, V,W ∈ O(1) and
suppose 1 + V < 1 +W , which is equivalent to W − V > 0. We calculate

(1 + U)(1 + V ) = 1 + U + V + UV

(1 + U)(1 +W ) = 1 + U +W + UW

In the difference (1+U)(1+W )−(1+U)(1+V ) = W−V +U(W−V ) we note that all
terms of U(W−V ) have degree greater than the first nonzero term of W−V . So the
difference is greater than zero, and we conclude that (1+U)(1+V ) < (1+U)(1+W ).
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Now we can formally define the ordering on the free group F by declaring

v < w in F ⇔ µ(v) < µ(w) in Λ.

By way of example, comparing (1 +X2)2 = 1 + 2X2 +X2
2 with the expression

in Equation 3.1, we conclude that x2
2 < x1x

2
2x
−1
1 , because the first term at which

their Magnus expansions differ, namely (X1X2), has coefficient 0 for x2
2 and 2 for

x1x
2
2x
−1
1 . We have established the following, moreover with an explicit, computable

ordering.

Theorem 3.4. Every free group is bi-orderable.

Problem 3.5. Suppose G is a group and consider its lower central series G0 ⊃
G1 ⊃ G2 ⊃ · · · , defined by G0 = G and Gn+1 = [G,Gn], the subgroup generated by
all commutators ghg−1h−1 with g ∈ G h ∈ Gn. Check that each Gn is normal in
G, and that Gn/Gn+1 is central in G/Gn+1 (so Gn/Gn+1 is abelian). Assume that
∩∞i=0Gi = {1} and that Gn/Gn−1 is torsion-free for all n. Verify that any group
G satisfying these properties is bi-orderable. (Hint: use Theorem 1.47 to take an
arbitrary ordering on each Gn/Gn+1, and define a non-identity g ∈ G to be positive
if its projection in Gn/Gn+1 is positive, where n is the largest integer such that
g ∈ Gn.)

This problem gives an alternate proof that free groups are orderable (in fact, it
is essentially equivalent to the Magnus expansion argument). Many other groups
of topological interest satisfy the conditions of the problem, for example the fun-
damental group of any orientable surface and the pure braid groups, so they are
also bi-orderable. It first appeared as a theorem in [78], where there is a similar
criterion for orderability involving the ascending central series.

Problem 3.6. Determine the ordering of the following in a free group on gen-
erators x, y, with x = x1 and y = x2 in the ordering described above: 1, x, y,
x2,yx2y−1, y−1x2y, xyx−1y−1.

Problem 3.7. Show that the ordering described on a free group of two (or
more) generators is dense, meaning that given u, v ∈ F (x, y) with u < v there
exists w ∈ F (x, y) with u < w < v. (Hint: argue that a left- or bi-ordering on a
group is dense if and only if there does not exist a least element greater than the
identity.)

Problem 3.8. Show that every bi-ordering a free group of two (or more) gen-
erators must be order-dense. (Hint: If u is the least element which is greater than
the identity, argue that any conjugate of u also has this property. Conclude that u
is central — but free groups have trivial centre.)

Problem 3.9. Suppose that < is a bi-ordering of a free group F , and suppose
that g ∈ F is neither the identity nor a power of a nonidentity element. Define a
new ordering ≺ of F as follows: if h is not a power of g, declare 1 ≺ h if g < hgh−1,
if h = gk then declare h to be positive if k is positive.

Show that ≺ is a left-ordering of F , and that g is the smallest positive element of
F with respect to the ordering ≺. Compare your result with the solution of Problem
2.16.

An element of a free group will be called Garside positive if it can be expressed
as a word in the generators without negative exponents. The subset of Garside
positive elements is a monoid.
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Problem 3.10. Show that the set F+ of Garside positive words is positive in
the ordering described above using the Magnus expansion, that is 1 < w whenever
1 6= w ∈ F+. Moreover, F+ is well-ordered by this ordering, that is, every nonempty
subset of F+ has a smallest element.

3.3. Ordering surface groups

The goal of this section is to prove the following.

Theorem 3.11. If Σ is a surface other than the projective plane P 2 or the
Klein bottle P 2#P 2, then π1(Σ) is bi-orderable.

Before embarking on the proof, note that we need only consider closed surfaces
Σ, for otherwise the fundamental group is a free group, which we have just shown
to be bi-orderable. For Σ the 2-sphere or torus T 2, the theorem is obvious, as their
groups are trivial and Z ⊕ Z respectively. The remaining cases will be settled by
proving the theorem for the particular surface Σ = 3P 2, since its group contains
all the remaining ones as subgroups, according to the following observations. We
note that for any integer k > 2 there is a covering map kT 2 → 2T 2 with deck
transformations the cyclic group of order k − 1. It follows that π1(2T 2) contains
π1(kT 2) as a normal subgroup of index k − 1.

Figure 2. A covering of 2T 2 by kT 2 in the case k = 5. Deck
transformations act as rotations by multiples of π/2.

Problem 3.12. Show that for k ≥ 1 the nonorientable surface kP 2 has oriented
double cover homeomorphic with (k − 1)T 2 (where 0T 2 ∼= S2). Moreover for k ≥ 3
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there is a (k − 2)-sheeted cyclic covering kP 2 → 3P 2. It follows that π1(3P 2)
contains finite index subgroups isomorphic with π1(kP 2) for all k ≥ 3 and also
π1(kT 2) for k ≥ 2. (Hint: think of 3P 2 = T 2#P 2 as a torus with a disk removed
and replaced by a Möbius band, and similarly think of kP 2.)

Picture Σ = 3P 2 as a torus with a small disk removed and replaced by a
Möbius band (cross-cap). The torus has universal cover R2, with covering group
being integral translations (x, y) 7→ (x+m, y+n), m, n ∈ Z. Removing small disks
about each point (m + 1/2, n + 1/2) and replacing them by cross-caps, we obtain

a covering Σ̃ → Σ. It is not the universal cover. Indeed, π1(Σ̃) is a free group on
a countable number of generators, which we may picture as loops which are the
central curves of the cross-caps, connected by “tails” to the origin of R2 in some
canonical manner (see Figure 3 and Problem 3.13).

Figure 3. A covering of T 2 with an added crosscap by a plane
with crosscaps at each point (m + 1/2, n + 1/2); the curve in red
is the generator a−1,2 described in Problem 3.13.

Let xm,n denote the generator corresponding to the cross-cap at (m+ 1/2, n+
1/2). We have an exact sequence

1 −→ π1(Σ̃) −→ π1(Σ) −→ Z⊕ Z −→ 1,

in which π1(Σ) is flanked by bi-orderable groups.
Using Problem 1.23 the theorem will follow once we establish that the action

of conjugation by π1(Σ) upon π1(Σ̃) preserves some ordering of π1(Σ̃). To this end,
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we order π1(Σ̃) using the Magnus expansion ordering, as described in the previous

section. The symbols Xm,n corresponding to the generators of π1(Σ̃) are considered

ordered lexicographically by their subscripts. Now π1(Σ) acts on Σ̃ by covering
translations, and therefore, each xm,n is taken to a conjugate of xm+m0,n+n0

. It
follows that the action preserves the Magnus ordering (see Problem 3.14).

Problem 3.13. Verify that π1(Σ̃) is a free group on a countable number of
generators, as follows: The fundamental group of R2 minus the disks is a free
group with generators am,n represented by a curve bounding the disk removed at
(m+ 1/2, n+ 1/2), plus a tail connecting it to the basepoint. If xm,n is represented
by the central curve of the Möbius band, we introduce, by Van Kampen’s theorem,
relations am,n = x2

m,n, and we calculate:

π1(Σ̃) ∼= 〈xm,n, am,n : am,n = x2
m,n〉 ∼= 〈xm,n〉,

where 〈xm,n〉 is the free group generated by {xm,n}m,n∈Z.

Problem 3.14. Define the ”leading term” of a Magnus expansion (written
with lower degree terms preceding higher) to be the first non-constant term with
nonzero coefficient. Verify that if two elements of the free group are conjugate,
then the leading terms of their Magnus expansions are the same. The positive
cone of the ordering of π1(Σ̃) defined above consists of all group elements whose
Magnus expansion has leading term with positive coefficient. It follows that the
covering translations of Σ described above preserve the positive cone, and hence the
bi-ordering defined in the proof of Theorem 3.11.

3.4. A theorem of Farrell

In this section we will show how the topological properties of a universal cov-

ering space p : B̃ → B are related to orderability of π1(B) via the action by deck
transformations [33].

Also, for this section only we will consider right-orderings of groups: we lose
nothing by doing so, since by Problem 1.2 every left-ordering of a group uniquely
determines a right-ordering and vice versa. We adopt this convention so that our
notation will agree with the standard convention in topology that concatenated
paths are written in the order they appear:

(α ∗ β)(t) =

{
α(2t) if t ∈ [0, 1

2 ],

β(2t− 1) if t ∈ [ 1
2 , 1].

We also recall the standard correspondence between the fundamental group of

B and deck transformations B̃ → B̃. To describe the correspondence, we fix a

basepoint b0 in B and a preimage b̃0 in B̃. Then given an element [γ] ∈ π1(B, b0),

we send [γ] to the deck transformation d : B̃ → B̃ satisfying d(b̃0) = γ̃(1), where γ̃

is the lift of γ which starts at b̃0. We will write [γ] in place of the associated deck

transformation d, so that our equation becomes [γ](b̃0) = γ̃(1). For simplicity we’ll

write [γ]b̃0, thinking of the deck transformations as a group action.

Proposition 3.15. Suppose that p : B̃ → B is a universal covering space.

If there exists a continuous map h : B̃ → R such that f : B̃ → B × R given by
f(x) = (p(x), h(x)) is an injection, then π1(B) is right-orderable.
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Proof. Suppose such a map h exists, and define an ordering of π1(B, b0)

according to the rule [α] < [β] if and only if h([α]b̃0) < h([β]b̃0).
Now suppose that this ordering is not right invariant, so that there exists

[α], [β], [γ] ∈ π1(B, b0) with [α] < [β] yet [α][γ] > [β][γ]. Let γ̃1 denote the lift of

γ with γ̃1(0) = [α]b̃0, and γ̃2 denote the lift of γ with γ̃2(0) = [β]b̃0. Note that

γ̃1(1) = [α ∗ γ]b̃0 = [α][γ]b̃0 and γ̃2(1) = [β ∗ γ]b̃0 = [β][γ]b̃0.
Then set g(t) = h(γ̃1(t)) − h(γ̃2(t)), so that g(0) < 0 and g(1) > 0. By the

intermediate value theorem, there exists t0 with g(t0) = 0 and therefore γ̃1(t0) =
γ̃2(t0). Consequently both of the lifts of γ must be the same, since they overlap.

This implies [α]b̃0 = [β]b̃0, forcing [α] = [β], a contradiction.

Note the necessity of right-orderability in the argument above. For the converse,
we first need to prepare some facts.

Problem 3.16. Show that there exists a discrete, densely ordered subset of
the real line which has no maximum or minimum element (Hint: Consider the
midpoints of the deleted intervals used to construct the middle thirds Cantor set).

Problem 3.17. If G is a countable right-ordered group, use the previous ex-
ercise to show that there exists an order-preserving map t : G → R with discrete
image. (Hint: mimic the arguments appearing in the proof of 2.23).

Proposition 3.18. Suppose that B is a space admitting a triangulation. If

π1(B) is right-orderable, then there exists a map h : B̃ → R such that the map

f : B̃ → B × R given by f(x) = (p(x), h(x)) is an embedding.

Proof. Begin by fixing a triangulation of B, and correspondingly a triangu-

lation of B̃ that we get by taking preimages of simplices under the covering map.
We also fix an order-preserving map t : π1(B)→ R with discrete image.

First, we define h on the vertices of B̃. For each v ∈ B, pick a point ṽ ∈ B̃
satsifying p(ṽ) = v. Then every vertex in the triangulation of B̃ can be written as
[γ]ṽ for some v ∈ B and [γ] ∈ π1(B), and we define

h([γ]ṽ) = t([γ]).

Now extend this definition linearly to the rest of B̃ using barycentric coordi-

nates. Let x ∈ B̃ be a point lying in a simplex with vertices [γ0]ṽ0, [γ1]ṽ1, . . . , [γn]ṽn,
and write x as

x = c0[γ0]ṽ0 + c1[γ1]ṽ1 + · · ·+ cn[γn]ṽn

where c1 + c2 + . . .+ cn = 1. Set

h(x) = c0t([γ0]) + c1t([γ1]) + · · ·+ cnt([γn]).

The next two exercises complete the proof by showing that f(x) = (p(x), h(x))
is an embedding.

Problem 3.19. For injectivity, suppose that f(x) = f(y), then x and y must lie
inside simplices ∆1, ∆2 that are preimages of a common simplex ∆ ⊂ B. Therefore
there exists [γ] ∈ π1(B) such that the corresponding deck transformation sends ∆1

to ∆2. Write x and y in barycentric coordinates, observe that the vertices of ∆2 are
the image under the action of [γ] of the vertices of ∆1. Show that [γ] > 1 and [γ] < 1
result in h(y) > h(x) and h(y) < h(x) respectively, since h is order-preserving.
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Problem 3.20. Show that f is an embedding (it is here that we need the map
t : π1(B)→ R to have discrete image).

So in the case that B is a triangulable space, we have the following equivalence.

Theorem 3.21 ([33]). If B is a space admitting a triangulation, then π1(B)

is right-orderable if and only if there is an embedding f : B̃ → B × R so that the
following commutes:

B̃
f

//

p
��

B × R

π1

||
B

Here, π1 is projection onto the first factor.

It should be mentioned that Farrell actually proved a more general result.
One need only assume that B is a Hausdorff, paracompact space with a countable
fundamental group. Moreover there is a generalization to arbitrary regular covering

spaces B̃ of B stating that there is an embedding f : B̃ → B × R making the

above diagram commute if and only if the quotient group π1(B)/p∗π1(B̃) is right-
orderable. The interested reader is referred to [33] for details.





CHAPTER 4

Knots

In this chapter we investigate left- and bi-orderability of knot groups. It turns
out that all knot groups are left-orderable (in fact, locally indicable), whereas some
knot groups are bi-orderable while others are not. We close the chapter with an
application of left-orderability of surface groups to the theory of knots in thickened
surfaces.

4.1. Review of classical knot theory

For the reader’s convenience, we outline (mostly without proof) some of the
basic ideas of classical knot theory. By a knot K we mean a smoothly embedded
simple closed curve in the 3-dimensional sphere S3, that is, K is smooth submanifold
of S3 which is abstractly homeomorphic with S1. More generally a link is a disjoint
finite collection of knots in S3. Other (essentially equivalent) versions of knot theory
consider knots in R3 or require them to be piecewise linear. Of course it is more
convenient to visualize knots in R3 and consider S3 to be R3 with a point at infinity
adjoined. We will not consider so-called wild knots.

Two knots or links are considered equivalent (or, informally, equal) if there is
an orientation-preserving homeomorphism of S3 taking one to the other. A well-
known construction provides, for any knot K, a compact, connected, orientable
surface Σ ⊂ S3 such that ∂Σ = K [89, Section 5.A.4]. The minimal genus g(Σ)
among all such surfaces bounded by a given K is called the genus of the knot, and
denoted g(K). In particular, the trivial knot (or unknot), which is equivalent to a
round circle in S3, is the unique knot of genus zero.

One may “add” two knots K and K ′ to form their connected sum K#K ′ as in
Figure 1 . This addition is associative and commutative and the unknot is a unit.
Moreover, genus is additive:

g(K#K ′) = g(K) + g(K ′).

Figure 1. The sum of the figure eight knot and trefoil.

35
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Problem 4.1. Use genus to argue that there are no inverses in knot addition:
the connected sum of nontrivial knots cannot be trivial.

A knot is said to be prime if it is not the connected sum of nontrivial knots.
Knots have been tabulated by crossing number, that is, the minimum number of
simple crossings of one strand over another in a planar picture of the knot. For
example the first nontrivial knot, the trefoil, is denoted 31 the first (and only)
knot in the table with crossing number three. Tabulations of prime knots up to
16 crossings have been made with the aid of computers; there are approximately
1.7 million [46]. Knots with more than ten crossings have names which include a
letter ‘n’ or ‘a’ to indicate whether or not they are alternating , meaning they can
be drawn in such a way that crossings are alternately over and under as one traces
the curve. Thus 11a5, pictured below, is the fifth eleven crossing alternating knot
in the table.

Figure 2. The fifth eleven crossing alternating knot.

Problem 4.2. Knots of genus one are prime.

If K is a knot, then the fundamental group of its complement π1(S3 \ K) is
called the knot group ofK. There are algorithms, for example the Wirtinger or Dehn
methods, for explicitly calculating finite presentations of a knot group from a picture
of the knot. An important property of knot groups is that their abelianization,
which may be identified with the integral homology group H1(S3 \K), is infinite
cyclic. This can be seen, for example, by Alexander duality or by taking the
abelianization of the Wirtinger presentation (Problem 4.6). It is known that the
unknot is the only knot whose group is abelian (and hence infinite cyclic).

If we are given two disjoint oriented knots J and K in S3, since the fundamental
group π1(S3 \K) abelianizes to Z, the class [J ] ∈ π1(S3 \K) determines an integer
in the abelianization. This integer is called the linking number of J with K, denoted
`k(J,K). It can be calculated from a diagram of the two knots as follows: for each
crossing where J passes under K, assign a value of ±1 according to the convention
in Figure 3. Summing these numbers over all crossings gives the quantity `k(J,K).

A family of knots whose groups are particularly simple are the torus knots .
Consider a torus T ∼= S1 × S1 which is the boundary of a regular neighborhood
of an unknot U , as pictured in Figure 4. Note that π1(T ) ∼= H1(T ) ∼= Z × Z. We
picture the generator of the first Z to be represented by an oriented curve µ that
links U and the generator λ of the second factor represented by a curve running
parallel to U , but on T and homologically trivial in the complement of U . If p and
q are relatively prime integers, there is a knot Kp,q on the surface T which (when
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J

K

K

J

+1 −1

Figure 3. The convention for calculation linking number.

oriented) represents the class pµ+ qλ ∈ H1(T ). The trefoil is T3,2. An application
of the Seifert-van Kampen theorem gives the following presentation for the torus
knot group:

π1(S3 \Kp,q) ∼= 〈a, b | ap = bq〉.

Problem 4.3. Verify the presentation for the torus knot group given above, by
proceeding as follows: The complement of Tp,q consists of a solid torus part, with
a small trough removed from its surface following the path of the torus knot, and
the part outside the torus, with a matching trough removed. A Seifert–van Kampen
argument gives the presentation π1(S3 \ Tp,q) ∼= 〈a, b | ap = bq〉.

Figure 4. The (2, 5)-torus knot wrapping 2 times meridionally
and 5 times longitudinally around a torus.

A knot K ⊂ S3 is fibred if there is a (locally trivial) fibre bundle map from
its complement to the circle with fibre a surface. All torus knots are fibred, but
there are many other fibred knots, some of which are shown in the table later in
this chapter. From the long exact sequence associated with a fibration, we get the
following short exact sequence associated to a fibred knot K, with fibre Σ:

1→ π1(Σ)→ π1(S3 \K)→ π1(S1)→ 1.

Note that π1(Σ) is a free group, since Σ is a surface with boundary, and of
course π1(S1) is infinite cyclic. Since both of these groups are locally indicable, we
apply Problem 4.5 and we conclude the following:

Theorem 4.4. A fibred knot’s group is locally indicable, hence left-orderable.

Problem 4.5. Show that if K and H are locally indicable groups and

1→ K → G→ H → 1

is a short exact sequence, then G is locally indicable.
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As we will soon see, this is true for all classical knot groups.
There are many polynomial invariants of knots. The oldest of them is the

Alexander polynomial, ∆K(t) , which can be defined in several ways. For example,
it can be calculated from a presentation of the knot group or from a matrix deter-
mined by a surface bounded by the knot. We refer the reader to [24] or [89] for
details. Important properties of the Alexander polynomial are that the coefficients
are integers, ∆K(1) = ±1 and t2n∆K(t−1) = ∆K(t), for some non-negative inte-
ger n. The latter condition means it has even degree and the palindromic property
that the coefficients read the same backwards as forwards. The unknot has trivial
polynomial ∆(t) = 1, but so do many nontrivial knots. It also behaves nicely under
connected sum:

∆K#K′(t) = ∆K(t)∆K′(t).

Alexander polynomials need not be monic, but for fibred knots they must be
monic and of degree 2g, where g is the genus of the fibre surface. This is because
they may be considered as the characteristic polynomial of a linear map, as will be
discussed later.

4.2. The Wirtinger presentation

Given a picture of a knot, there are various procedures for calculating the knot
group. One method is the Wirtinger presentation, which we’ll now describe. We
assume the planar knot diagram contains only simple crossings, and they are de-
noted by deleting a little interval of the lower strand near the crossing. We also
assume the knot has been assigned an orientation, that is a preferred direction.
What remains of the curve is now a disjoint collection of (oriented) arcs in the
plane. Give each arc a name, say x, y, .... The knot group will be generated by
these symbols. For each crossing, one introduces a relation in the following way.
Turn your head so that both strands at the crossing are oriented generally from
left to right. Two possibilities are pictured, corresponding to “positive” and “neg-
ative” crossings. In each case we introduce a relation among the three generators
which appear at the crossing, according to the rule given in Figure 5. A presen-
tation for the knot group then consists of the generators x, y, ... and the relations
corresponding to the crossings.

y

x

z y

x z

xy = yz xy = zx

Figure 5. Relations in the knot group determined at a crossing.

Here is an explanation of why this works. Imagine the basepoint for π1(R3 \K)
to be your eye, situated above the plane of the projection. For each oriented arc,
draw a little arrow under the arc and going from right to left, if one views the
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arc oriented upward. Then the loop corresponding to x consists of a straight line
running from your eye to the tail of the arrow, then along the arrow, and then
returning to your eye again in a straight line, as in Figure 6. With a little thought,
the relations of Figure 5 become clear. We refer the reader to [89] for the proof
that these relations are a complete set of relations (in fact discarding any one of
the relations still leaves us with a complete set, but we will not need this). The
curves described above are called “meridians” of the knot.

Figure 6. A loop (in red) representing a generator of the
Wirtinger presentation.

Problem 4.6. Show that all the meridians in the Wirtinger presentation are
conjugate to each other. Conclude that the abelianization of every knot group is
infinite cyclic.

Example 4.7. The group of the ‘right-handed’ trefoil K pictured in Figure 7
has presentation with generators x, y, z. The relations coming from the crossings
are (1) zx = xy, (2) xy = yz and (3) yz = zx. Clearly the third relation is
redundant, so we have

π1(S3 \K) ∼= 〈x, y, z | zx = xy = yz〉.
The second equation can be used to eliminate z = y−1xy and then we obtain a
single relation y−1xyx = xy, which yields the simpler presentation

π1(S3 \K) ∼= 〈x, y | xyx = yxy〉.

Problem 4.8. Another way to compute the trefoil’s group is to consider it as
the (2, 3)-torus knot group, and proceed as in Problem 4.3. One finds π1(S3\T2,3) ∼=
〈a, b | a2 = b3〉. Verify algebraically that this presentation and the presentation
〈x, y | xyx = yxy〉 yield isomorphic groups.

4.3. Knot groups are locally indicable

In this section, we begin our investigation into the orderability of knot groups–
by showing that they are, in fact, locally indicable.

Theorem 4.9. Every knot group is locally indicable, and hence left-orderable.
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z

xy

(1)

(2) (3)

Figure 7. The right-handed trefoil.

Proof. Before beginning the proof, we first note that knot groups are indi-
cable. If X = S3 \ K then the Hurewicz homomorphism h : π1(X) → H1(X)
is surjective, and H1(X) is infinite cyclic since it is equal to the abelianization
of π1(X), which is infinite cyclic by Problem 4.6. To prove that π1(X) is locally
indicable, we need to consider an arbitrary nontrivial finitely generated subgroup G
of π(X) and argue that it admits a nontrivial homomorphism to Z. This argument
is due essentially to Howie and Short [49].

Case 1: G has finite index. Then the restriction h|G of the Hurewicz homo-
morphism is nontrivial and we are done.

Case 2: G has infinite index. There is a covering space p : X̃ → X such that,
for suitably chosen basepoint, p∗(π1(X̃)) = G. Although X̃ must be noncompact,
its fundamental group is finitely generated, by assumption. By a theorem of P.
Scott [95], X̃ has a compact “core” — that is a compact connected submanifold C

of X̃ such that inclusion induces an isomorphism i∗ : π1(C)→ π1(X̃). See Figure 8.

CX̃

Figure 8. The compact core C ⊂ X̃.

Noting that C must have nonempty boundary, we first argue that we can assume
there are no 2-sphere components of ∂C. For suppose Σ ⊂ ∂C is a 2-sphere. From
Alexander’s theorem one knows that knot complements are irreducible, meaning
that every tame 2-sphere in the manifold bounds a ball. Then, since irreducibility
is inherited by coverings, we know X̃ is irreducible (see [38], for example, for proofs

of these facts). Therefore there is a 3-ball B in X̃ with ∂B = Σ. It is easy to
see that C is either a subset of B or else disjoint from the interior of B. But
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C ⊂ B ⊂ X̃ would contradict the fact that i∗ is a nontrivial homomorphism, so we
conclude that B is disjoint from the interior of C. If we now define C ′ := C ∪ B
we see that C ′ will also serve as a compact core for X̃. After repeating this a finite
number of times we obtain a compact core, which we will again call C, such that
∂C 6= ∅ and every component of ∂C is a surface of positive genus, as in Figure 9.

CX̃

B
B

Figure 9. The compact core C ⊂ X̃ with boundary spheres
capped off.

Lemma 4.10 finishes Case 2, because then one easily constructs a surjection of
the abelian group H1(C) onto Z and combines it with the Hurewicz map to get a
surjection G ∼= π1(C)→ H1(C)→ Z.

Lemma 4.10. The integral homology group H1(C) is infinite.

Proof. This is a standard argument, repeated here for the reader’s conve-
nience. We will show, equivalently, that the rational homology H1(C;Q) has posi-
tive rank. Recall that C is a compact orientable 3-manifold with nonempty bound-
ary containing no 2-spheres. Consider the closed manifold 2C obtained from two
copies of C, with their boundaries glued together by the identity map. The Eu-
ler characteristic of a closed 3-manifold is always zero, so we have 0 = χ(2C) =
2χ(C) − χ(∂C). Our assumption on ∂C implies that its Euler characteristic is
less than or equal to zero. Therefore χ(C) ≤ 0. But by definition of χ(C) as an
alternating sum of ranks, we conclude

1− rank(H1(C;Q)) + rank(H2(C,Q))− 0 ≤ 0

which implies rank(H1(C;Q)) ≥ 1.

4.4. Bi-ordering certain knot groups

In this section we’ll investigate the bi-orderability of knot groups. We organize
our discussion by considering the cases of fibred and non-fibred knots separately.

4.4.1. Fibered knots. The focus of our discussion concerning fibred knots
will be the following two results. More details may be found in [85] and [22].

Theorem 4.11. If K is a fibred knot whose Alexander polynomial ∆K(t) has
all roots real and positive, then its knot group is bi-orderable.

Theorem 4.12. If K is a nontrivial fibred knot whose knot group is bi-orderable,
then ∆K(t) has at least two real positive roots.

Before discussing the proofs of these theorems, we’ll consider some examples
and then prepare some preliminary results in Subsections 4.4.2 and 4.4.3.
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Example 4.13 (Torus knots). Recall from Problem 4.3 that the (p, q)-torus
knots have knot group 〈a, b | ap = bq〉. Note that a commutes with bq but not
with b (unless the group is abelian, and the knot unknotted). By Problem 1.21 we
conclude:

Proposition 4.14. Nontrivial torus knot groups are not bi-orderable.

This could also be proved using Theorem 4.12 and the fact that torus knots are
fibred. As a typical example, consider the knot 819, which is the (4, 3)-torus knot.
It has Alexander polynomial

∆819
= 1− t+ t3 − t5 + t6 = (t2 +

√
3t+ 1)(t2 −

√
3t+ 1)(t2 − t+ 1).

Its six roots are (
√

3± i)/2, (−
√

3± i)/2 and (1± i
√

3)/2. More generally, the torus
knot T (p, q) has Alexander polynomial

∆Tp,q
=

(tpq − 1)(t− 1)

(tp − 1)(tq − 1)

whose roots are on the unit circle and not real.

Example 4.15 (The knot 41). This knot, sometimes called the figure-eight knot
and pictured in the table below, is also a fibred knot. It has Alexander polynomial
1−3t+t2, whose roots are (3±

√
5)/2, both real and positive. Theorem 4.11 implies

the following.

Proposition 4.16. The group of the knot 41 is bi-orderable.

Example 4.17 (Other bi-orderable fibred knot groups.). The criterion of hav-
ing all roots of ∆K(t) real and positive is not really very common. The table below
contains all nontrivial prime knots with 12 or fewer crossings whose groups are
known to be bi-orderable because the knots are fibred and all roots of the Alexan-
der polynomial are in R+. The diagrams were produced using Rob Scharein’s
program Knotplot [93]. Some of the data on the knots are from KnotInfo and its
database [17], kindly provided by Chuck Livingston.

Knot Alexander polynomial

41 1− 3t+ t2

812 1− 7t+ 13t2 − 7t3 + t4
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10137 1− 6t+ 11t2 − 6t3 + t4

11a5 1− 9t+ 30t2 − 45t3 + 30t4 − 9t5 + t6

11n142 1− 8t+ 15t2 − 8t3 + t4

12a0125 1− 12t+ 44t2 − 67t3 + 44t4 − 12t5 + t6

12a0181 1− 11t+ 40t2 − 61t3 + 40t4 − 11t5 + t6

12a0477 1− 11t+ 41t2 − 63t3 + 41t4 − 11t5 + t6

12a1124 1− 13t+ 50t2 − 77t3 + 50t4 − 13t5 + t6
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12n0013 1− 7t+ 13t2 − 7t3 + t4

12n0145 1− 6t+ 11t2 − 6t3 + t4

12n0462 1− 6t+ 11t2 − 6t3 + t4

12n0838 1− 6t+ 11t2 − 6t3 + t4

We think these are the only fibered knots of at most twelve crossings known to
have bi-orderable group at the time of the writing.

Example 4.18 (Non-bi-orderable fibered knot groups). There are many more
knot groups which are known not to be bi-orderable by applying Theorem 4.12.
According to [17], among the knots of 12 or fewer crossings, 1246 of them are fibred
and among those knots 4851 have Alexander polynomials with no roots in R+, so
they cannot be bi-orderable. A complete list of them can be found in [22]; the
examples with up to ten crossings are: 31, 51, 63, 71, 77, 87, 810, 816, 819, 820, 91,
917, 922, 926, 928, 929, 931, 932, 944, 947, 105, 1017, 1044, 1047, 1048, 1062, 1069, 1073,
1079, 1085, 1089, 1091, 1099, 10100, 10104, 10109, 10118, 10124, 10125, 10126, 10132,
10139, 10140, 10143, 10145, 10148, 10151, 10152, 10153, 10154, 10156, 10159, 10161, 10163.

4.4.2. Fibred knots, bi-ordering and eigenvalues. A fibration X → S1,
with fibre Σ, can be regarded as a product of Σ with an interval I = [0, 1] with the
ends identified via some homeomorphism h of Σ called the monodromy associated
with the fibration:

X = (Σ× I)/(x, 1) ∼ (h(x), 0).

The fundamental group of X is an HNN extension of that of Σ (see [40] for
background on HNN extensions). In the special case that X is the complement of

1While [17] says that 487 knots have Alexander polynomial with no roots in R+, there is
actually a numerical error in two cases caused by rounding error.
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a fibred knot or link, Σ is a connected surface with boundary and its fundamental
group is a free group. We may write

π1(X) = 〈x1, . . . , x2g, t | t−1xit = h∗(xi), i = 1, . . . , 2g〉

where {xi} is a set of free generators of π1(Σ), the map h∗ : π1(Σ)→ π1(Σ) is the
homotopy monodromy map induced by h, and g is the genus of the surface Σ.

We know that free groups are bi-orderable. Although left-orderability is pre-
served under taking HNN extensions, bi-orderability may not be. In fact it is not
difficult to verify that an HNN extension of a bi-orderable group G is again bi-
orderable if and only if there is a bi-ordering of G which is invariant under the
automorphism ϕ : G→ G associated with the extension.

Thus when X is the complement of a fibred knot, its fundamental group is
bi-orderable if and only if there exists a bi-ordering of the free group π1(Σ) which is
invariant under the homotopy monodromy h∗ : π1(Σ)→ π1(Σ). We also note that
for a fibred knot K the Alexander polynomial ∆K(t) is precisely the characteristic
polynomial for the homology monodromy h∗ : H1(Σ) → H1(Σ). The homology
groups may be considered with rational (or even real or complex) coefficients, so
that h∗ is a linear map of vector spaces. (Note that we are using the same symbol for
the homotopy monodromy and the homology monodromy – the induced map upon
abelianization. The context should make it clear which map is under discussion.)

4.4.3. Digression on linear algebra. Suppose we have an invertible linear
map L : Rn → Rn and we wish to find a bi-ordering < of Rn as an additive group
such that L preserves the order: v < w ⇔ L(v) < L(w).

It may be impossible — for example if L has finite order or even a finite orbit.
Indeed suppose that L(v) 6= v but Lk(v) = v and < is an invariant ordering. If
L(v) < v we have L2(v) < L(v) < v and inductively Lk(v) < v, a contradiction. If
L(v) > v a similar contradiction ensues.

On the other hand, suppose L is represented by an upper triangular matrix, as
in the following equation (take n = 3 for simpicity, here a, b and c are arbitrary): λ1 a b

0 λ2 c
0 0 λ3

 x1

x2

x3

 =

 λ1x1 + ax2 + bx3

λ2x2 + cx3

λ3x3

 .

Further suppose the eigenvalues λi are all positive. Then we can order vectors
by taking the positive cone to be all vectors whose last nonzero coordinate is greater
than zero. In other words, we use a reverse lexicographic order. Then one sees
from the above equation that L preserves that positive cone and hence respects the
ordering. We have sketched a proof of the following.

Proposition 4.19. If all the eigenvalues of a linear map L : Rn → Rn are real
and positive, then there is a bi-ordering of Rn which is preserved by L. Similarly
for Qn in place of Rn.

Problem 4.20. Prove this proposition.

There is a partial converse.

Proposition 4.21. Suppose there is a bi-ordering of Rn which is preserved by
the nonsingular linear map L : Rn → Rn. Then L has at least one positive real
eigenvalue. Similarly for Qn in place of Rn.
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This may be proved topologically. Consider the set H of all points in Rn for
which every neighbourhood contains points greater than zero and also points less
than zero in the given ordering.

Problem 4.22. Show that H is a linear subspace of Rn by arguing that 0 ∈ H
and H is closed under addition and by multiplication by scalars. Moreover argue
that H separates Rn, so it is a codimension one subspace with positive points on
one side and negative points on the other. Points on H may be either positive or
negative in the given ordering, with the exception of zero, of course. Inductively H
may be separated by a subspace again in a similar manner.

To continue with the proof of Proposition 4.21, let D ⊂ Sn−1 be the (closed)
half of the unit sphere on the positive side of H. Then D is homeomorphic with an
n − 1 dimensional ball. Since L preserves the ordering, the map v → L(v)/|L(v)|
takes D to itself. By the Brouwer fixed-point theorem, that map has a fixed point.
Finally, we observe that such a fixed point is an eigenvector of L with positive
eigenvalue. To argue for Qn just repeat this argument, considering Qn inside Rn
in the usual way.

4.4.4. Proof of Theorem 4.11. Since roots of the Alexander polynomial are
exactly the eigenvalues of the homology monodromy associated with a fibred knot,
our problem reduces to showing:

Proposition 4.23. Suppose h : F → F is an automorphism of a finitely-
generated free group. If all the eigenvalues of the induced map h∗ : H1(F ;Q) →
H1(F ;Q) are real and positive, then there is a bi-ordering of F preserved by h.

Proof. One way to order a free group F is to use the lower central series as
discussed in Problem 3.5. Recall the series is F1 ⊃ F2 ⊃ · · · defined by

F1 = F, Fi+1 = [F, Fi]

This has the properties that
⋂
Fi = {1} and each Fi/Fi+1 is free abelian.

Choose an arbitrary bi-ordering of Fi/Fi+1, and define a positive cone of F
by declaring 1 6= x ∈ F positive if its class in Fi/Fi+1 is positive in the chosen
ordering, where i is the last subscript such that x ∈ Fi. This is a bi-ordering of F .

If h : F → F is an automorphism it preserves the lower central series and
induces maps of the lower central quotients: hi : Fi/Fi+1 → Fi/Fi+1. With this
notation, h1 and F/F1 are just the abelianization hab and Fab respectively; and
it turns out that, in a sense, all the hi are determined by h1. That is, there is
an embedding of Fi/Fi+1 in the tensor power F⊗kab , and the map hi is just the

restriction of h⊗kab . The reader is referred to [85] for details.
The assumption that all eigenvalues of hab are real and positive implies that

the same is true of all its tensor powers. This allows us to find bi-orderings of the
free abelian groups Fi/Fi+1 which are invariant under hi for all i. Using these to
bi-order F , we get invariance under h, which proves the present proposition and
Theorem 4.11 as well.

Problem 4.24. Verify the assertions of the preceding paragraph.
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4.4.5. Proof of Theorem 4.12. Let’s turn to the proof of the third main
theorem: If K ⊂ S3 is a nontrivial fibred knot whose knot group is bi-orderable,
then ∆K(t) has at least two real positive roots. First of all, since the Alexander
polynomial satisfies ∆K(t) = t2g∆K(1/t) and ∆K(1) = ±1, any positive real root
r will produce another, namely 1/r. So we need only find one positive real root.

Our third theorem will follow from a more general result. Suppose G is an
arbitrary finitely generated group. If φ : G→ G is an automorphism, we can define
its eigenvalues to be the eigenvalues of its induced map on the rational vector space
H1(G;Q) ∼= (G/G′)⊗Q.

Theorem 4.25. Suppose G is a nontrivial finitely generated bi-orderable group
and that the automorphism φ : G→ G preserves a bi-ordering of G. Then φ has a
positive eigenvalue.

Proof. To prove this, assume φ : G → G preserves a bi-ordering of G. Then
φ induces an automorphism φ∗ : G/G′ → G/G′, but (unless the commutator sub-
group G′ is convex) we don’t know that G/G′ inherits a φ∗-invariant ordering.
However G, being finitely generated, does have a maximal proper convex subgroup
C as we saw in Section 2.3. Since φ respects the ordering, C is φ-invariant. More-
over G/C is abelian so G′ ⊂ C and we have the commutative diagram with exact
rows:

0 −−−−→ C/G′ −−−−→ G/G′ −−−−→ G/C −−−−→ 0y φ∗

y φC

y
0 −−−−→ C/G′ −−−−→ G/G′ −−−−→ G/C −−−−→ 0.

Also since C is convex, G/C inherits an order from G which is invariant under φC .
Writing U = C/G′ ⊗ Q, V = G/G′ ⊗ Q, and W = G/C ⊗ Q, tensoring with

Q yields the commutative diagram of finite-dimensional vector spaces over Q with
exact rows:

0 −−−−→ U −−−−→ V −−−−→ W −−−−→ 0y φV

y φW

y
0 −−−−→ U −−−−→ V −−−−→ W −−−−→ 0,

where φW = φC ⊗ id and φV = φ∗ ⊗ id.
Since φW preserves the induced ordering of W , it has a positive real eigenvalue.
Letting φU be φV restricted to U , we conclude that φV = φU ⊕ φW . Therefore

the characteristic polynomial of φV factors as

χφV
(λ) = χφU

(λ) · χφW
(λ).

The positive eigenvalue of φW is also an eigenvalue of φV , concluding the proof.

4.4.6. Non-fibered knots. Next we turn our attention to non-fibred knots.
At the time of this writing, non-fibered knots are not as well understood as fibered
knots. Indeed, there are analogues of Theorems 4.11 and 4.12 in the non-fibered
case, but they only apply to groups with two generators and a single relator [19].
Moreover, the relator must satisfy some technical combinatorial conditions which
we will not cover here.

Nevertheless, there are some classes of non-fibered knots whose groups have a
presentation of the necessary form, and so bi-orderability of their groups can be
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determined by examining the roots of the Alexander polynomial. We present three
such examples below, see [21] for full details.

Example 4.26 (Two-bridge knots). A two-bridge knot is a knot which admits
a diagram appearing as in Figure 10. In that diagram, each box represents some
number ai of horizontal half-twists; the sign of ai indicates the direction of twisting.
For example, Figure 11 shows the case of ai = 3 and ai = −1 twists.

It is a result of Schubert that two-bridge knots are in one-to-one correspondence
with coprime pairs of odd integers p and q, with 0 < p < q [94]. Thus every two-
bridge knot may be written as K p

q
where p

q is a reduced fraction. Their knot groups

are given by the presentation

π1(S3 \K p
q
) = 〈a, b | aw = wb〉

where w = bε1aε2 · · · bεq−2aεq−1 and εi = (−1)b
ip
q c. See [74] for details of this

presentation.

a1

a2

a3

an−1

an

Figure 10. A two bridge knot. In each box, ai is an integer which
indicates the number of half twists.

Figure 11. Our twisting convention, with ai = 3 on the left and
and ai = −1 on the right.

Therefore two-bridge knot groups have two generators and one relation. With
some work, one can also show that the relator awb−1w−1 satisfies the combinatorial
condition needed to apply [19, Theorem A], from which we conclude:

Theorem 4.27. If K is a two-bridge knot whose knot group is bi-orderable,
then ∆K(t) has at least two positive real roots.

This allows us to find many more knots whose group is not bi-orderable, a num-
ber of which are non-fibred. For example, amongst knots with 10 or fewer crossings,
the following knots are non-fibered, two-bridge, and their Alexander polynomials
have no positive roots; therefore their groups are not bi-orderable: 52, 72, 73, 74,
75, 88, 813, 92, 93, 94, 95, 96, 97, 99, 910, 913, 914, 918, 919, 923, 1010, 1012, 1015,
1019, 1023, 1027, 1028, 1031, 1033, 1034, 1037, 1040.

Example 4.28 (Twist knots). Twist knots are a special class of two-bridge
knots that appear as in Figure 12. Restricting to twist knots on can say more:
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m twists

Figure 12. The twist knot Km with m positive half-twists.

Theorem 4.29. For each integer m > 1, let Km denote the twist knot with m
twists. If m is even, then Km has bi-orderable knot group, otherwise its group is
not bi-orderable.

Using Theorem 4.29 one finds an additional 4 knots with 12 or fewer crossings
which are non-fibered and have bi-orderable group: 61, 81, 101, 12a0803.

At present, very little is known about non-fibred knots that are not two-bridge.
We end this section with one such example.

Example 4.30 (Other non-fibered knots with bi-orderable knot group). The
knot 1013 is also known to have a bi-orderable knot group, though it is not two-
bridge. Its group must be analyzed directly using the theorems of [19], then one
applies the fact that its Alexander polynomial ∆1013 = 2− 13t+ 23t2 − 13t3 + 2t4

has only positive real roots.

Figure 13. The knot 1013.

4.5. Crossing changes: a theorem of Smythe

One of the early applications of orderable groups to knot theory appeared in a
1967 paper by N. Smythe [102]. We have been depicting knots in R3 by drawing
projections in the plane which have only a finite set of transverse double points, and
are otherwise nonsingular. At each double point, one strand is “over” and the other
“under” referring to its co-ordinate in the third dimension. This is traditionally
depicted by putting a little gap in the understrand.

A crossing change consists of reversing the situation, so that the previously
“over” strand becomes the “under” and vice-versa. It has long been known (for
example, see [1] p. 299) that any knot projection will become a projection of
an unknot after making some crossing changes. One method of doing this is the
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process of “laying down a rope.” First choose a nonsingular point of the projection
as basepoint and orient the curve. Then, starting at the basepoint and travelling in
the direction of the orientation, each time a crossing is encountered one makes the
first visit to that crossing be “under” by changing the crossing if necessary. The
process is illustrated in Figure 14 in which the knot on the left becomes the one
on the right after changing crossings by laying the rope, starting at the base point
indicated by the dot.

Figure 14. A knot before and after crossing changes

Note that the knot depicted on the right in Figure 14 is indeed unknotted.
However, suppose that instead of the knots being in R2×R and projecting onto the
first coordinate, we regard the knots as being in a thickened annulus Σ×R, where
Σ is the region between the dashed circles depicted. Then the knot depicted on
the right is nontrivial in Σ× R, in the sense that it does not bound a nonsingular
disk in that space. That is, the laying down the rope trick does not work in this
setting. Nevertheless, there is a method of changing crossings to trivialize knots in
the more general setting of a “thickened surface” Σ×R and the obvious projection
p : Σ×R→ Σ×{0}. If there is any hope of doing this, we must assume the knot is
homotopically trivial, as changing the crossing can be realized by a homotopy and
an unknot, which by definition bounds a disk, is contractible in Σ× R.

Theorem 4.31 (Smythe [102]). Suppose Σ is a surface (orientable or not, and
with or without boundary) and that K is a knot in the interior of Σ×R which projects
to a curve in Σ × {0} with only transverse double points, otherwise nonsingular.
Further assume that K is contractible in Σ×R. Then one may change some of the
crossings in the projection to obtain a knot K ′ which is trivial, in the sense that it
bounds a nonsingular disk in Σ× R.

Proof. The case Σ ∼= S2 is clear: just find a point x ∈ S2 so that K is
disjoint from the line {x} × R, and remove that line to bring the problem back to
the standard R2×R case which is already known. The case Σ being the projective
plane RP 2 is dealt with separately in [102] and for simplicity we will ignore that
case. In case Σ has boundary, remove the boundary and call the interior again Σ.

In all the remaining cases, the universal cover Σ̃ is homeomorphic with the
plane R2 and the fundamental group π1(Σ) is left-orderable, as we have seen in
Chapter 3 (in fact in most cases it is bi-orderable, but we will not need this). Note
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that Σ̃×R is the universal cover of Σ×R. Choosing a basepoint at a regular point

of K and orienting K, the knot K lifts to a knot (rather than a path) in Σ̃ × R
because it represents a null-homotopic loop. In fact, it lifts to infinitely many knots

K̃u ⊂ Σ̃ × R, parametrized by u ∈ π1(Σ), which we regard as the group of deck

transformations of Σ̃×R. These lifts inherit basepoints and orientations from those
of K. See Figure 15 for an illustration.

k̃t−1 k̃1 k̃t

Figure 15. The lifts of K in Σ̂× R, with π1(Σ) = Z = 〈t〉

Note that under the projection Σ̃ × R → Σ̃ × {0} the family K̃u, u ∈ π1(Σ)

projects to Σ̃×{0} with simple double points, which are isolated, though infinite in
number if there are any. Now let ≺ be a left-invariant ordering of π1(Σ), and change

the crossings of the projection of the K̃u according to the following algorithm:
Case 1. If the crossing involves the projection of two distinct lifts K̃u and K̃v,

change it if necessary so that K̃v is above K̃u (i.e., has greater R coordinate) if and
only if u ≺ v.

Case 2. If the crossing involves strands from the same lift, then make the strand
lower if it is the first encounter of that crossing, when proceeding along the knot in
the direction of the orientation, starting from the basepoint.

This procedure is illustrated in Figure 16. It is easy to see, using the left-
invariance of ≺ that these crossing changes are equivariant with respect to the
covering translations. Now, letting 1 denote, as usual, the identity element of
π1(Σ), we see that K̃1 is above all the curves K̃u with u ≺ 1 and below those with

1 ≺ u. The lifts of K have become “layered” in Σ̃×R because of the Case 1 moves.

In particular, by an isotopy of Σ̃ × R which preserves projection onto Σ̃ we can

regard K̃1 as lying in the slab Σ̃ × (−1, 1) while all the other K̃u are outside this

slab, either above or below. Moreover, K̃1 has become unknotted in Σ̃ × (−1, 1),
because Case 2 is just the “laying of the rope algorithm” for changing self-crossings

of the projection of K̃1 to Σ̃× {0}, recalling that Σ̃ ∼= R2. This is shown in Figure
16.

That is, K̃1 bounds a nonsingular disk D ⊂ Σ̃ × (−1, 1). By reversing the

isotopy mentioned above, so that the lifts K̃u are again equivariant under covering
translations, its image, which we’ll again call D, remains a disk disjoint from all
the K̃u, u 6= 1. Now consider the image D′ of D under the covering projection

Σ̃× R→ Σ× R. It may be that D′ is a singular disk, but since D is disjoint from
the lifts K̃u, u 6= 1 all the singularities must be in the interior of D′ and K is the
nonsingular boundary of D′. It follows from the theorem known as Dehn’s lemma
[84] that K bounds a nonsingular disk in Σ× R, so it is unknotted.
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Figure 16. After applying the crossing-change algorithm.



CHAPTER 5

Three-dimensional manifolds

We saw in Chapter 3 that surfaces, that is to say two-dimensional manifolds,
have bi-orderable fundamental groups, with the exception of the Klein bottle (whose
group is only left-orderable) and the real projective space.

Not surprisingly, in three dimensions there is a much greater variety of man-
ifolds and also of groups which are their fundamental groups. We recall that a
3-manifold is a metric space each of whose points has a neighbourhood homeomor-
phic to R3, Euclidean 3-space, or else the closed half-space R3

+ = {(x, y, z) : z ≥ 0}
for 3-manifolds with boundary. We may assume our manifolds are smooth, mean-
ing that there is a covering by charts homeomorphic with R3 or R3

+ such that the
transition functions between charts are infinitely differentiable. This enables us
to talk about smooth surfaces in such a manifold and avoid pathologies such as
the Alexander horned spheres and other “wild” examples. We will also make the
assumption that all the 3-manifolds under consideration, other than knot and link
complements, are compact.

A 3-manifold M is irreducible if every smooth 2-sphere in M bounds a 3-
dimensional ball in M . For example, we already saw in the proof of Theorem 4.9
that knot complements are irreducible. There is a notion of connected sum of 3-
manifolds, analogous to the case of surfaces, and a 3-manifold is called “prime”
if it is not the connected sum of two manifolds, neither being S3. Irreducible 3-
manifolds are prime, but there is one 3-manifold, namely S2 × S1, which is prime
but not irreducible. It is a theorem of Milnor [70] that each compact 3-manifold
is uniquely (up to the ordering of the factors) expressible as a connected sum of
prime manifolds.

5.1. Ordering 3-manifold groups

We will begin with a result of [10], which might be considered a fundamental
theorem of left-orderability of 3-manifold groups.

Theorem 5.1. Suppose M is an orientable, irreducible 3-manifold, possibly
noncompact and possibly with boundary. Then π1(M) is left-orderable if and only
if there exists a nontrivial left-orderable group L and a surjective homomorphism
φ : π1(M)→ L.

Problem 5.2. Consult the proof of Theorem 4.9 in Section 4.3 and adapt it to
prove Theorem 5.1. Show that a similar argument proves the next theorem as well.

Theorem 5.3. If an irreducible 3-manifold M has infinite first homology, then
its fundamental group is locally indicable, hence left-orderable.

We can also show that some classes of reducible manifolds have locally indicable
fundamental group, but for this we first need to to prepare a preliminary result.

53
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Problem 5.4. The goal of this exercise is to show that the free product of
locally indicable groups is locally indicable, following the appendix of [39]. First,
use Problem 4.5 to show that the product G ×H of two locally indicable groups is
locally indicable. Combine this results with the short exact sequence1

1→ F → G ∗H → G×H → 1

where F is a free group, to show that if G and H are locally indicable, then so is
G ∗H.

Corollary 5.5. If L is a link, that is a nonempty collection of disjoint knots
in R3 or S3, then the link group π1(S3 \ L) is locally indicable.

Proof. If S3\L is irreducible, the corollary follows immediately, since H1(S3\
L) ∼= Zn, where n is the number of components of L. If it is not irreducible,
a classical argument provides 2-spheres separating L into irreducible components,
each of whose groups is therefore locally indicable. But π1(S3 \L) is a free product
of those groups, and so is also locally indicable by the previous problem.

5.2. Surgery

Surgery is one of the key connections between knot theory and 3-manifolds. It
was pioneered by Max Dehn [26] who used surgery to give an alternate construction
of Poincaré’s homology sphere.

5.2.1. Surgery along a knot. Consider a knot K in the 3-sphere. Surgery
along K consists of removing a tubular neighbourhood of K and then sewing it
back, but possibly by a different attaching map along the boundary.

Formally, we can think of a neighbourhood of K as parametrized

N(K) ∼= S1 ×D2,

the product of a unit circle and unit disk in C. Under this correspondence, the curve
S1×{0} corresponds to K. The curve λ ∼= S1×{1} is called a parallel, or longitude.
It is disjoint from, but parallel to, K. There is an ambiguity (choice of framing)
in the choice of longitude, in the sense that it may wrap around the knot K any
number of times. We choose the parametrization so that λ is homologically trivial
in S3 \K (this is called the ‘preferred’ longitude). It is characterized by specifying
that the linking number of λ with K be zero, where the linking number is calculated
by orienting λ and K to be parallel. A meridian is the curve µ ∼= {1} × S1. Note
that λ and µ meet at a single point, corresponding to {1}×{1}. Since λ and µ lie on
the torus ∂N(K), their classes in π1(S3 \K), which we will designate by the same
symbols µ and λ, commute and serve as generators of the subgroup π1(∂N(K)) of
π1(S3 \ int(N(K))) ∼= π1(S3 \K). It is a classical fact that if K is a nontrivial knot,
inclusion induces an injective homomorphism π1(∂N(K)) → π1(S3 \ int(N(K))).
It is convenient to orient µ so that its linking number with K is +1.

If J is any homotopically nontrivial simple closed curve on the torus ∂N(K),
we may form the space

M := (S3 \ int(N(K))) ∪ϕ (S1 ×D2),

1That the kernel of this sequence is a free group follows from the Kurosh subgroup theorem.
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µ

λ

Figure 1. A tubular neighbourhood of the right-handed trefoil,
with meridian in red and preferred longitude in blue.

where ϕ : S1×S1 → ∂N(K) is a homeomorphism that sends the meridian {1}×S1

of S1 × D2 to J . Such a map ϕ exists for any such curve J . The manifold M
depends, up to homeomorphism, only on the isotopy class of J in ∂N(K).

If J is oriented, then there is an expression [J ] = µpλq in π1(∂N(K)) where p
and q are relatively prime integers (including the case {p, q} = {0,±1}). Reversing
the signs of p and q simultaneously just changes the orientation of J , and does not
affect the homeomorphism class of M . So it is convenient to denote the choice of
J by the fraction p/q ∈ Q ∪ {∞}. The surgery manifold M is then specified as
p/q-surgery along K, and denoted M = S3(K, p/q). Note that in M , the curve J
bounds a disk, hence the class of J in the knot group becomes trivial in π1(M). In
fact π1(M) can be computed from the knot group by killing [J ], that is, by adding
the relation [J ] = 1 to a presentation of the knot group. The case p/q = ±1/0 =∞
corresponds to the ‘trivial’ surgery, resulting in S3(K,∞) ∼= S3.

The homology of M is also easily calculated. Since H1(S3 \ K) is infinite
cyclic, generated by the class of a meridian, we can use a Mayer-Vietoris argument
to conclude that for any knot K we have H1(S3(K, p/q)) ∼= Z/pZ. Note that
S3(K, p/q) is a homology sphere (meaning that its first homology group is trivial)
if and only if p = 1. Therefore, surgery on any knot will produce many examples
of homology spheres.

Dehn [26] argued that +1 surgery on the right-handed trefoil yields the Poincaré
dodecahedral space, which is a homology sphere with nontrivial, but finite, funda-
mental group (see Problem 5.9).

Example 5.6. Let M = S3(K,−1) be constructed as −1 surgery on the right-
handed trefoil K. The framing curve J looks just like the preferred longitude of
Figure 1, but with one extra turn around K so that the linking number of J with K
is−1. To work out π1(M) we take the knot group and kill the element corresponding
to J . Referring to Example 4.7, J can be read off as [J ] = x−4yzx = x−4yxy−1xy.
So we have

π1(M) ∼= 〈x, y | xyx = yxy, x4 = yxy−1xy〉
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We can simplify this presentation with the substitution a = x, b = xy, so
y = a−1b. The first relation becomes ba = a−1b2 or aba = b2 or (ab)2 = b3. The
second becomes a4 = a−1bab−1ab or a6 = abab−1ab, which, in the presence of the
relation aba = b2 becomes a6 = bab or a7 = (ab)2. So we have

π1(M) ∼= 〈a, b | (ab)2 = b3 = a7〉.

Problem 5.7. Check that this group is perfect, that is, it abelianizes to the
trivial group. Conclude that it is not indicable.

By Problem 5.7 M is a homology sphere. In fact, M is a Brieskorn manifold,
denoted Σ(2, 3, 7). In general, for positive integers p, q, r one may define

Σ(p, q, r) = {(u, v, w) ∈ C3 | up + vq + wr = 0 and |u|2 + |v|2 + |w|2 = 1}.
In other words, it is the intersection of the unit 5-sphere in complex 3-space with
the variety up + vq + wr = 0.

Since π1(Σ(2, 3, 7)) is not indicable (there is no map π1(Σ(2, 3, 7)) → Z) it is
certainly not locally indicable. Nevertheless, Bergman [5] gave an explicit embed-

ding of this group in the group ˜PSL(2,R), which is the universal cover of the group
PSL(2,R). Now PSL(2,R) acts on the circle S1, for example by fractional linear
transformations on R ∪ {∞} ∼= S1. Moreover, as a space PSL(2,R) has the homo-

topy type of S1, so its universal cover ˜PSL(2,R) is an infinite cyclic cover and is a
group which acts effectively on the real line (see Example 1.15). From Proposition

2.23 we can conclude that ˜PSL(2,R) is a left-orderable group and then conclude

Theorem 5.8. The group π1(Σ(2, 3, 7)) ∼= 〈a, b|(ab)2 = b3 = a7〉 is a nontrivial
left-orderable group which is not locally indicable.

A more general proof which includes this case appears in Theorem 6.19, noting
that Σ(2, 3, 7) is a Seifert fibred 3-manifold (see Section 6.3).

Problem 5.9. Show that +1 surgery on the right-hand trefoil yields a manifold
with fundamental group 〈a, b | (ab)2 = b3 = a5〉.

This is a finite perfect group of order 120. The resulting manifold is Dehn’s
construction of the Poincaré homology sphere, also known as Σ(2, 3, 5).

5.2.2. Surgery along a link. Not all closed 3-manifolds arise as surgery on
a knot. In particular, the first homology group of such a manifold must be cyclic.
However, one may generalize the idea of surgery to a link L = L1 ∪ · · · ∪ Ln of n
components. One specificies coefficients ri = pi/qi, one for each component Li and
performs surgery on all the knots simultaneously, removing disjoint tubular neigh-
bourhoods of the Li and sewing in solid tori S1 ×D2 according to the coefficients
ri exactly as in the knot case.

Theorem 5.10 (Lickorish - Wallace). Every closed orientable 3-manifold arises
as surgery along some link in S3.

The example of Σ(2, 3, 7) in the previous section is a manifold whose geometry

is modeled on ˜PSL(2,R), one of the eight Thurston geometries in dimension three.
The most important of the geometries is hyperbolic. A closed manifold is said
to be hyperbolic if it has hyperbolic 3-space H3 as its universal cover, so that
the deck transformations are hyperbolic isometries. One can use this to define the
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5

25

Figure 2. Surgery description of the Weeks manifold.

volume of the manifold, and by Mostow rigidity the volume is actually a topological
invariant. According to Thurston, the set of volumes of hyperbolic 3-manifolds is
a well-ordered set of real numbers, so in particular there is a smallest volume.

Example 5.11. The Weeks manifold W described by surgery as in Figure 2 is
the closed hyperbolic 3-manifold of least volume [34]. Its fundamental group is

π1(W ) ∼= 〈a, b | babab = ab−2a, ababa = ba−2b〉.

Problem 5.12. The abelianization of this group is isomorphic with Z/5Z ⊕
Z/5Z.

So the group π1(W ) is not perfect, but W is a rational homology sphere, in
that its homology with rational coefficients agrees with that of S3.

Theorem 5.13 ([14]). The fundamental group of the Weeks manifold W is not
left-orderable, though it is torsion-free.

It is torsion-free because the universal cover of W is H3, which is contractible,
so π1(W ) has finite cohomological dimension. This implies it cannot have torsion
elements. Here is the idea of the proof that π1(W ) is not left-orderable. The defining
relations can be rewritten as b−1ab−2a = (ab)2 = ba−2ba−1 and a−1ba−2b = (ba)2 =
ab−2ab−1. If such a left-ordering were to exist, we may assume that a > 1 and get
a contradiction to each of the cases b < 1, a > b > 1 and b > a > 1. For example
a > b > 1 implies a−1b < 1. But then the relation (ba)2 = a−1ba−2b leads to a
contradiction, as (ba)2 is positive, whereas a−1ba−2b = (a−1b)a−1(a−1b) must be
less than the identity, being a product of three negative elements.

Problem 5.14. Verify the remaining details of the argument that π1(W ) cannot
be left-ordered.

5.3. Branched Coverings

Another important application of knot theory to 3-dimensional manifolds is
the construction of branched coverings. As with surgery, the branched cover con-
struction over knots and links in S3 gives rise to all closed orientable 3-manifolds.
Moreover, Hilden, Lozano and Montesinos [41] showed that there is a single knot in
S3 which produces all such 3-manifolds as branched covers of that single knot! For
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this reason it is called a universal knot. In fact the figure-eight knot 41 is known
to be universal [42].

5.3.1. Constructing branched covers. The prototype of branched covers
(in dimension 2) is the mapping of the plane R2, expressed in polar coordinates by
(r, θ) 7→ (r, nθ), where n is a fixed integer greater than 1. If the origin is removed,
this mapping is a regular n-fold covering map R2\{0} → R2\{0} in the usual sense,
but as a map R2 → R2 it has the origin as branch point, where it is one-to-one
instead of n-to-one, as it is away from the origin. The same formula provides a
branched cover of the unit disk D2 ⊂ R2 over itself.

In three dimensions we can define a branched cover of a solid torus S1 × D2

over itself which will be useful in the following discussion. For coordinates φ ∈ S1

and (r, θ) ∈ D2 define

f(φ, (r, θ)) = (φ, (r, nθ)).

Here the branch set is the central curve S1 × {0} of the solid torus. Again those
branch points have a single preimage, whereas all other points have n preimages.

For simplicity, in this section we will only consider a special class of branched
covers of a knot K ⊂ S3, the n-fold cyclic branched covers, which we may con-
struct as follows. Let N ∼= S1 ×D2 be a tubular neighbourhood of K in S3, where
S1 × {0} corresponds to the knot K. Let X := S3 \ int(M) denote the comple-
ment of the interior of N , sometimes called the “exterior” of the knot. It differs
from the knot complement in that it is compact and has a boundary, which is a
torus. However π1(X) is isomorphic with the knot group π1(S3 \ K). Consider
the Hurewicz homomorphism π1(X) → H1(X) ∼= Z, which can also be thought
of as the abelianization of the knot group. Also, let Z → Z/nZ be the mapping
onto the finite cyclic group which is reduction modulo n. Taking the composite of
these homomorphisms defines the homomorphism π1(X) → Z/nZ. The kernel of
this map is a subgroup of π1(X) which is normal and has index n. By standard

covering space theory, there is a regular covering space p : X̃ → X corresponding
to this kernel. Thus a loop in X lifts to a loop (rather than just a path) in X̃ if and
only if the homology class it represents is divisible by n; in other words, its linking
number with K is a multiple of n.

Notice that the boundary ∂X of X is also the boundary ∂N of N , and the

lift ∂̃N = p−1(∂N) is a torus ∂̃N ∼= S1 × S1. The preimage of a meridian on ∂N

(corresponding to {∗} × S1) is a closed curve on ∂̃N which covers the meridian

n times. We may identify the restriction p|∂̃N with the map f defined above,
restricted to the boundary S1×S1 of the solid torus S1×D2. But now we can use
f to extend the covering map p to a solid torus Ñ ∼= S1 ×D2 whose boundary is

attached to X̃ along ∂̃N to define a branched covering X̃ ∪ Ñ → X ∪N = S3. Its
branch set downstairs is exactly the knot K and the manifold

Σn(K) := X̃ ∪ Ñ

is called the n-fold cyclic branched cover of S3 branched along K.
An interesting class of examples of cyclic branched covers are the Brieskorn

manifolds Σ(p, q, r) which were discussed in Section 5.2. It was noted by Seifert
[97, p. 412, Theorem 17] that Σ(p, q, r) is the r fold branched cover of S3 branched
over the p, q torus knot Tp,q that is, Σ(p, q, r) ∼= Σr(Tp,q). And by symmetry the
same may be said for any permutation of p, q, r in that formula!
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ε = +1 ε = −1

Figure 3. Signs assigned to crossings

Using more complicated, not necessarily regular, coverings of X we can define
other branched coverings of S3 branched over K, whose branch sets upstairs may
not be single curves, as is the case for the cyclic branched covers. This is what makes
some knots universal. One can also define branched covers over links. However, we
will not consider these more sophisticated branched covers here.

5.3.2. Double branched covers of alternating knots. A knot is called
alternating if it has a planar diagram in which, as one moves along the knot in a
fixed direction, the crossings encountered alternate as over- and under-crossings.
This is a large class of knots, but there are many non-alternating knots too. A
beautiful connection between branched coverings and orderability is the following
theorem due to Boyer, Gordon and Watson [9].

Theorem 5.15. If K is a nontrivial alternating knot in S3, then the fundamen-
tal group π1(Σ2(K)) of the 2-fold branched cover of S3 over K is not left-orderable.

In the remainder of this section we’ll discuss a particularly elegant proof of this
due to Greene [37]. First some preliminaries. Consider a planar diagram of a knot
K in which (as usual) we assume the only crossings are simple 2-fold crossings. This
diagram separates the plane into regions, which may be coloured black or white in
a “checkerboard” manner. Thus any arc of the diagram (away from the crossings)
has a black region on one side and a white region on the other side, and at each
crossing locally the regions are coloured as in Figure 3, which illustrates the two
possible configurations. For example, we might take the black regions to be the
ones consisting of points with the property that a curve transverse to the diagram,
from that point to the unbounded region, meets the diagram in an odd number of
points.

Problem 5.16. Verify that the construction outlined in the previous sentence
does, in fact, produce a checkerboard colouring of the knot diagram.

We now construct a graph W = (V,E), the “white graph” as follows. The
vertices V = {v0, . . . , vp} are the white regions, with a distinguished “root” vertex
v0 (say the unbounded region). For each crossing of the diagram, there is an edge
(v, w) ∈ E connecting the two white regions that appear at that vertex. This edge
is assigned a sign ε as in Figure 3. Note that W is a connected planar graph.

Form a group Γ as follows. It has one generator xv and one relation rv = 1
for each v ∈ V . To describe the relation rv, imagine a small loop going around
the vertex v in a counterclockwise direction, starting at an arbitrary point, and
let (v, w1), . . . , (v, wk) be the edges encountered with respective signs ε1, . . . , εk in

order. Then rv =
∏k
i=1(x−1

wi
xv)

εi . We also introduce the relation xv0 = 1.
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Proposition 5.17 (Greene [37]). The fundamental group of Σ2(K) is isomor-
phic to Γ.

Problem 5.18. Show that a knot diagram is alternating if and only if all the
signs at the crossings are the same.

We now assume the diagram of our knot K is alternating and that Γ ∼=
π1(Σ2(K)) can be given a left-ordering <. By Problem 5.18, and taking the mirror
image of an alternating diagram if necessary, which does not change π1(Σ2(K)),
we may assume all the crossings have sign ε = +1. Choose a vertex v for which
xw ≤ xv for all w ∈ V . If xw = xv for all w ∈ V , then from the relation xv0 = 1 we
conclude π1(Σ2(K)) is the trivial group. By a standard result of knot theory, this
implies that K is unknotted.

Thus if K is not the trivial knot, there is some w ∈ V for which xw < xv. Since
W is connected, we may assume (v, w) ∈ E. In the relation corresponding to v

we have every term in the product rv =
∏k
i=1(x−1

wi
xv) is greater than or equal to

the identity, and one is strictly greater, and we conclude that rv > 1, contradicting
that rv = 1.

5.3.3. Heegaard-Floer homology and L-spaces. One reason the above
result is interesting has to do with a conjecture which is open at the time of this
writing. Ozsváth and Szabó [82] define an L-space to be a closed 3-manifold M such
that H1(M ;Q) = 0 (that is, a rational homology sphere) and its Heegaard-Floer

homology ĤF (M) is a free abelian group of rank equal to |H1(M ;Z)|, the simplest
possible. Lens spaces, and more generally 3-manifolds with finite fundamental
group are examples of L-spaces, but there are also many L-spaces with infinite
fundamental group.

Proposition 5.19 ([83], Proposition 3.3). Every 2-fold branched cover of an
alternating knot in S3 is an L-space.

Together, Theorem 5.15 and Proposition 5.19 provide evidence for the truth of
the following conjecture.

Conjecture 5.20 (Boyer-Gordon-Watson [9]). An irreducible rational homol-
ogy 3-sphere is an L-space if and only if its fundamental group is NOT left-orderable.

Problem 5.21. Use the results of this section to show that the (3,7)-torus knot
is not alternating.

5.3.4. Other branched covers and complete presentations. The paper
[25] has many examples of branched covers of S3 whose fundamental groups are
not left-orderable. We will concentrate on just one family of examples to illustrate
another technique for showing a group is not left-orderable. It involves what the
authors call a complete presentation.

Definition 5.22. Consider the free group Fn with generators x1, . . . , xn.
(1) Given a finite sequence of ‘signs’ ε1, . . . , εn, εi = ±1 for all i, and a nonempty

reduced word w = xb1a1 · · ·x
bm
am in Fn, say that w blocks the sequence ε1, . . . , εn if

either εaj bj > 0 for all j = 1, . . . ,m or else εaj bj < 0 for all j = 1, . . . ,m.
(2) A set W of reduced words of Fn is complete if for each sequence ε1, . . . , εn

of signs, there is a word in W which blocks that sequence.
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(3) The presentation of a group with generators x1, . . . , xn and relations w = 1
for w ∈W is complete if the set W is complete.

Problem 5.23. If a group has a complete presentation, then it is not left-
orderable.

A general method for computing the fundamental group of a branched cover is
discussed in [25]. We state one of the conclusions without proof.

Proposition 5.24 ([25]). The fundamental group of the n-fold branched cover
of S3 over the figure-eight knot 41 has the presentation

π1(Σn(41)) ∼= 〈x1, x2, . . . , x2n | xi = x−1
i−1xi+1, x2x4 · · ·x2n = 1〉

where i = 1, 2, . . . , 2n and subscripts are taken modulo 2n.

Problem 5.25. Show that this is a complete presentation and conclude that
π1(Σn(41)) is not left-orderable for any n greater than 1.

5.4. Bi-orderability and surgery

Theorem 5.26. Suppose K is a fibred knot in S3 and nontrivial surgery on K
produces a 3-manifold M whose fundamental group is bi-orderable. Then the surgery
must be longitudinal (that is, 0-framed) and ∆K(t) has a positive real root. More-
over, M fibres over S1.

This is actually an easy application of Theorem 4.12. First, note that the
surgery must be longitudinal for homological reasons. If X is the complement of
the tubular neighbourhood of the knot K, the knot group π1(X) has preferred
elements which generate the fundamental group of ∂X: meridian µ, represented by
a loop bounding a disk transverse to the knot, and longitude λ, which is parallel
to the knot and homologically trivial in X. A surgery framing curve J is then
represented by a pair of relatively prime integers p and q, where

[J ] = µpλq

and the surgery manifold M has fundamental group obtained from π1(X) by killing
µpλq. Similarly, a Mayer-Vietoris argument shows that H1(M) can be calculated
from H1(X), which is infinite cyclic and generated by the meridian, by killing µp.
So H1(M) is a finite cyclic group unless p = 0.

Now suppose π1(M) is bi-orderable. It is a nontrivial group by the so-called
property P theorem [60]. Recalling Theorem 2.19 and that π1(M) itself is finitely
generated, there is a surjection π1(M)→ Z. This cannot happen if H1(M) is finite.
It follows that p must be zero, or in other words [J ] = λ. Since the preimages of
points under the fibration map X → S1 are longitudinal curves on ∂X, they bound
meridian disks in S1 ×D2. The fibration map to S1 thus extends to S1 ×D2 and
we see that M fibres over S1.

The fibration of M is essentially that of the knot exterior X: the fibres Σ̂ of
the former are the fibres Σ of the latter with disks sewn to the boundary. The
first homology of the fibres coincide in the two cases, and the same is true of the

homology monodromy. By Theorem 4.25, applied to the group G = π1(Σ̂) we
conclude that the homology monodromy has a positive eigenvalue. But this is a
root of the Alexander polynomial of the knot.
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Theorem 5.27. If surgery on a knot K in S3 results in an L-space, then the
knot group π1(S3 \K) is not bi-orderable.

Of course, one may rephrase this by saying that the group of a knot is bi-
orderable, then surgery on that knot never results in an L-space.

Here is an outline the proof, one may consult [22] for details. By Yi Ni [80] if
surgery on K yields an L-space, K must be fibred. Moreover, Ozsváth and Szabó
show that the Alexander polynomial of K must have a special form if it admits and
L-space surgery. Then one argues that a polynomial of this form has no positive
real roots, so the knot group cannot be bi-ordered.



CHAPTER 6

Foliations

In this chapter we consider a natural way of constructing actions of a fun-
damental group on an ordered space, via a topological structure on the manifold
called a foliation. Loosely speaking, a foliation of a n-dimensional manifold M is a
decomposition of M into lower dimensional manifolds, which we can strictly state
as follows.

We can partition the n-manifold M into connected k-dimensional manifolds
called leaves for some positive k < n, and cover M by charts φ : U → Rk × Rn−k
such that each leaf L ⊂M satisfies

φ(L ∩ U) =
⋃
i∈I
Rk × {Pi}

where {Pi}i∈I is a collection of points in Rn−k. In other words, each connected
component of L ∩ U is a small bit of Rk, called a plaque. Overlapping plaques
piece together to form maximally connected immersed submanifolds, these are the
leaves. The quantity n− k is called the codimension of the foliation.

6.1. Examples

Example 6.1. Given manifolds B and F , let B̃ → B be a universal cover,
and suppose we are given a representation ρ : π1(B) → Homeo(F ). Then one can
construct a space M , which is a fibre bundle with base B and fibre F , by using the

action of π1(B) on B̃ × F given by

g · (b, y) = (g(b), ρ(g)(y)).

Here, the action of g ∈ π1(B) on b ∈ B̃ is by deck transformations. Then the
quotient

M ∼= (B̃ × F )/ ∼
inherits a foliation depending on the choice of ρ whose leaves are the images of

B̃ × {y0}. Foliations constructed in this way are called suspension foliations.
It is perhaps easiest to see this in a low-dimensional case, such as the torus,

which is a (trivial) bundle S1 ↪→ T 2 → S1. A representation ρ : π1(S1) →
Homeo(S1) is determined by the image of a generator of π1(S1), which is infinite
cyclic. Suppose that one of the generators of π1(S1) is sent to f : S1 → S1.

Then the suspension foliation is constructed as

(R× S1)/ ∼, (x, t) ∼ (x+ 1, f(t))

where we understand that the covering map R → S1 is the quotient R → R/Z.
The leaves are the images of R× {t} in the quotient. This can also be understood
as the quotient

([0, 1]× S1)/ ∼ (0, t) ∼ (1, f(t)).

63
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(0, t)

(0, f(t))

(0, f2(t))

(0, f3(t))

(0, f4(t))

Figure 1. A suspension foliation of the torus determined by a
function f : S1 → S1, with the gluing in the quotient indicated
by dotted lines. Highlighted in red is a portion of a leaf of the
foliation, together with its preimage upstairs.

Written as above, the suspension of the map f appears as in Figure 1.

Example 6.2. Consider the vertical strip [−1, 1] × R, with a foliation whose
leaves are described as follows: We first declare any set of the form{

(x, y) : y =
1

1− x2
+ c, where c ∈ R

}
to be a leaf of the foliation. This covers the interior of [−1, 1] × R by leaves, only
two vertical lines remain, namely x = −1 and x = 1. Declare each vertical line to
also be a leaf.

From this template we can make a foliation of the plane by repeating the
construction above on each vertical strip [k, k + 2] × R where k ∈ Z is odd. The
resulting foliation appears in Figure 2.

We also create a foliation of the annulus using this template. Take the quotient
map [−1, 1] × R → [−1, 1] × R/Z and the image of each leaf projects to a leaf in
the quotient, providing us with a foliation of the annulus.

We cannot give many more interesting examples without increasing the dimen-
sion of our manifolds: It is known that the only closed, compact 2-manifolds that
admit a foliation (necessarily of codimension 1) are the torus and the Klein bottle
[81].



6.1. EXAMPLES 65

Figure 2. A periodic foliation of the plane.

Problem 6.3. Describe the Klein bottle K as a fibre bundle. Show how your
description can be used to construct many suspension foliations of K, specifically
highlighting the difference between your construction and the construction indicated
in Figure 1.

Example 6.4. Consider the foliation of the vertical strip [−1, 1]×R of Example
6.2, and construct D2 × R as a solid of rotation by spinning the strip [−1, 1] × R
about the y-axis. The resulting space D2 × R inherits a foliation, which descends
to a foliation of the solid torus D2×S1 via the quotient map D2×R→ D2×R/Z.
The resulting foliation is called a Reeb foliation of the solid torus, note that the
boundary of the torus is a single leaf of the foliation.

Example 6.5. The 3-sphere can be decomposed as a union of two solid tori.
Explicitly we can take S3 ⊂ R4 to be all the unit vectors, which we can write as

S3 = {(x, y, z, w) : x2 + y2 + z2 + w2 = 1}.
Then the two solid tori are

{(x, y, z, w) ∈ S3 : w2 + x2 ≤ 1/2} and {(x, y, z, w) ∈ S3 : y2 + z2 ≤ 1/2}
with common boundary the so-called“Clifford torus”

{(x, y, z, w) : w2 + x2 = 1/2, y2 + z2 = 1/2}.
If each solid torus is given the Reeb foliation from Example 6.4, then the two
foliations piece together to give the Reeb foliation of S3. Note that we can glue the
two foliations together and obtain a foliation of S3, because in each Reeb foliated
solid torus the boundary of the torus is a leaf.

Example 6.6. Here is our first example of a codimension two foliation. A
model Seifert fibring of the solid torus D2 × S1 is a decomposition of D2 × S1 into
disjoint circles, called fibers. The fibers are constructed by taking the solid torus
T 2 and building it as

T 2 = (D2 × [0, 1])/ ∼
where ∼ identifies D2 × {0} with D2 × {1} with a 2πp

q twist for some p
q ∈ Q (p, q,

relatively prime positive integers). Illustrated in Figure 3 is the case q = 6. Then if
p = 5, for example, we would rotate the top by 5 ‘clicks’ and glue it to the bottom.
The leaves of T 2 are then built out of segments {x} × [0, 1] and are of two kinds:

• The image of {0} × [0, 1], called an exceptional fibre.
• The image of q equally spaced segments {x} × [0, 1] which are glued to-

gether end to end, called a regular fibre.

This particular foliation of the solid torus will be important in the material to come.
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Rotate 5 clicks...

then glue top to bottom.

Figure 3. A model Seifert fibering

6.2. The leaf space

Given a foliation F of a manifold M , one can construct a quotient space by
declaring that two points in M are equivalent if and only if they lie in the same leaf
of F . In other words, you crush each leaf to a single point. The resulting set is then
equipped with the quotient topology and is called the leaf space of the foliation F ,
and it is denoted M/F .

Problem 6.7. Describe the leaf space of a suspension foliation of the torus (Ex-
ample 6.1), the Reeb foliation of the annulus (Example 6.2), and the Reeb foliation
of S3 (Example 6.5).

Problem 6.8. Describe the leaf space of the foliation depicted in Figure 2.
Thinking of Figure 2 as the universal cover of a torus T = S1 × S1, where the
covering map is given by the quotient (x, y) ∼ (x + 2, y + 2), describe the action
of π1(T ) on Figure 2 by deck transformations. Show that the action of π1(T ) by
deck transformations on R2 descends to an action on the leaf space, and describe
the action.

Our interest in the leaf space stems from the situation we observed in Prob-
lem 6.8. When M admits a foliation F , there is a corresponding pull-back foliation

F̃ of the universal cover M̃ . Then the image of any leaf of F̃ under a deck transfor-

mation of M̃ will again be a leaf. This means that the deck transformations, which

are in 1-1 correspondence with elements of π1(M), will act on the leaf space M̃/F̃ .
This fact will be an essential ingredient in both the proof of Theorem 6.15 and in
Section 6.4.

6.3. Seifert fibred spaces

A Seifert fibring of a 3-manifold M is a decomposition of M into circles such
that the neighbourhood of each circle is fibre-preserving diffeomorphic to the neigh-
bourhood of a fibre in some model Seifert fibring of the solid torus (Example 6.6). A
manifold is called Seifert fibred if it admits a Seifert fibring. For ease of exposition
we will stick to the case of orientable Seifert fibred manifolds.

Since we have already introduced foliations, it is worth mentioning that Seifert
fibred manifolds can also be defined as the 3-manifolds admitting a codimension 2
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foliation whose leaves are circles. The equivalence between this definition and our
definition in terms of fibred solid torus neighbourhoods is due to a deep theorem of
Epstein [31].

Here is a way to construct orientable Seifert fibered manifolds, following [38].
Let Σ be a compact, connected, orientable surface with m boundary components.
Choose disks D1, . . . , Dn ⊂ int(Σ), and let

Σ′ = Σ \ (int(D1) ∪ . . . ∪ int(Dn)).

Let M ′ denote the manifold S1 × Σ′.
For each ∂Di ⊂ Σ′ there’s a corresponding torus Ti = S1 × ∂Di ⊂ ∂M ′. Then

on each torus Ti we fix curves that determine a basis of π1(Ti): our basis will be
[h∗i ] = [{1} × ∂Di] together with [h], the class of a circle S1 × {pt} in the product
S1 × Σ′. With these bases, we have a correspondence between curves γ : S1 ↪→ Ti
and fractions βi

αi
∈ Q ∪ {∞} by representing the class each such curve relative to

our basis:

[γ] = αi[h
∗
i ] + βi[h]

Now we construct a Seifert fibered manifold M over the surface Σ by choosing
n reduced fractions βi

αi
⊂ Q, for i = 1, . . . , n. Then to each Ti ⊂ ∂M ′, attach

D2 × S1 by gluing ∂D2 × {y} to the curve αi[h
∗
i ] + βi[h] on Ti. Writing g for the

genus of Σ and m for the number of boundary components, we denote the resulting
manifold by

M(+g,m;β1/α1, . . . , βn/αn)

with + in front of the g to indicate Σ is orientable (a minus sign is used for Σ
non-orientable). 1

With some care, we can mimic the above construction when Σ is non-orientable
by replacing M ′ with an orientable S1-bundle over Σ, in which case we end up with
a Seifert fibred manifold denoted by M(−g,m;β1/α1, . . . , βn/αn). We refer the
reader to [38] for details of this case.

Problem 6.9. Thinking of the manifold M = M(+g,m;β1/α1, . . . , βn/αn) as
a 3-manifold with a codimension two foliation F whose leaves are circles, describe
the leaf space M/F .

This construction is a good way to understand orientable Seifert fibered mani-
folds, since they all arise in this way.

Proposition 6.10. [38, Proposition 2.1] Every orientable Seifert fibered man-
ifold is diffeomorphic, via a map which preserves the fibres, to one of the manifolds
M(±g,m;β1/α1, . . . , βn/αn) for some choice of Σ and fractions βi/αi. Two mod-
els M(±g,m;β1/α1, . . . , βn/αn) and M(±g,m;β′1/α

′
1, . . . , β

′
n/α

′
n) are orientation-

preserving diffeomorphic if and only if βi/αi ∼= β′i/α
′
i mod 1 (up to permuting in-

dices); and if b = 0 then

β1/α1 + · · ·+ βn/αn = β′1/α
′
1 + · · ·+ β′n/α

′
n

is also required.

1There is another standard notation for Seifert fibred manifolds which includes an integer ‘b’,
which is an Euler class of a certain bundle. We do not discuss the matter of Euler classes here.
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Problem 6.11. Use the Seifert-Van Kampen theorem to show that the fun-
damental group of a closed Seifert fibred manifold M constructed from a closed,
orientable surface Σ (that is g ≥ 0) as above is:

π1(M) = 〈a1, b1, . . . , ag, bg, γ1, . . . , γn, h |

h central , γ
αj

j = h−βj , [a1, b1] . . . [ag, bg]γ1 . . . γn = 1〉.

When g < 0 and Σ is closed, the fundamental group turns out to be

π1(M) = 〈a1, . . . , a|g|, γ1, . . . , γn, h |

ajha
−1
j = h−1, γ

αj

j = h−βj , γjhγ
−1
j = h, a2

1 . . . a
2
|g|γ1 . . . γn = 1〉,

and one can calculate that if g 6= 0,−1, then these groups have infinite abelian-
ization. The group π1(M) will also have infinite abelianization if the underlying
surface Σ has nonempty boundary, because then the boundary of M consists of a
union of tori (for a proof of this fact, just use the same argument as in the proof of
Lemma 4.10). Therefore if either g 6= 0,−1 or ∂Σ 6= ∅, then |H1(M)| = ∞ and in
these cases left-orderability is dealt with by using Theorem 5.1.

Theorem 6.12. [10] If M is an orientable closed Seifert fibered manifold and
|H1(M)| =∞, then π1(M) is left-orderable.

Proof. Theorem 5.1 applies to all irreducible Seifert fibred manifolds. There
is only one reducible closed orientable case, S1 × S2, and it has group Z.

Therefore when M is an orientable Seifert fibred manifold, the question of
whether or not π1(M) is left-orderable reduces to the case |H1(M)| < ∞. In this
case Σ must be either S2 or RP 2 and the groups in question become

π1(M) = 〈γ1, . . . , γn, h | h central , γ
αj

j = h−βj , γ1 . . . γn = 1〉

for the S2 case, and for the RP 2 case:

π1(M) = 〈γ1, . . . , γn, y, h | yhy−1 = h−1, γ
αj

j = h−βj , γjhγ
−1
j = h, y2γ1 . . . γn = 1〉.

Problem 6.13. Show that when Σ is S2 or RP 2, then the fundamental group
π1(M) has finite abelianization. (Hint: If φ is the abelianization map, the relation
φ(γj)

αj = φ(h)βj means that φ(γj) and φ(h) can both be written as powers of the
same element.)

In fact, when Σ = RP 2 this presentation allows us to conclude that π1(M) is
NOT left-orderable via direction calculation, here is how: Assume that h > 1 in
some left-ordering of π1(M). Each of the relations γ

αj

j = h−βj forces h−βi < γ−1
i <

hβi if βi > 0 and hβi < γ−1
i < h−βi if βi < 0. Since γi and h commute for all i, these

inequalities multiply together as in Problem 1.19 to give h−k < (γ−1
n . . . γ−1

1 ) < hk

for some positive integer k. Therefore h−k < y2 < hk, and similarly h−k < y−2 <
hk.

Problem 6.14. Show that h−k < y2 < hk and h−k < y−2 < hk where k > 0
and h > 1 forces yhy−1 to be positive, contradicting yhy−1 = h−1 < 1. Conclude
that π1(M) is never left-orderable when Σ = RP 2.
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What remains is the case Σ = S2, and in this case we can characterize left-
orderability of the fundamental group in entirely topological terms.

A foliation of a Seifert fibered manifold is called horizontal if regular fibers
are transverse to the leaves, meaning that [h] is the class of a curve that cuts
transversely through the plaques in M . A foliation is co-orientable if the leaves of
the foliation admit a coherent choice of normal vector.

Theorem 6.15. [10] Suppose that M � S3 is an orientable Seifert fibred man-
ifold over the surface Σ = S2, so that |H1(M)| <∞. Then π1(M) is left-orderable
if and only if M admits a co-orientable horizontal foliation.

Proof. First we suppose that π1(M) is left-orderable, and we fix a correspond-
ing dynamic realization ρ̂ : π1(M)→ Homeo+(R) as constructed in Section 2.4.

Problem 6.16. Using the relators γ
αj

j = h−βj , argue that ρ̂(h)(x0) = x0 im-

plies that ρ̂(g)(x0) = x0 for all g ∈ π1(M). Therefore ρ̂(h) must act without fixed
points.

Problem 6.17. Show that any homeomorphism f : R → R that acts without
fixed points must be conjugate to a translation by either +1 or −1 (Hint: If f has no
fixed points, then the intervals [fk(0), fk+1(0)] partition R. Conjugate each interval
[fk(0), fk+1(0)] to the interval [k, k + 1] via an appropriate function gk and then
piece together all of the gk’s).

By the previous problems, we assume without loss of generality that ρ̂(h) con-
jugates to ρ(h)(x) = x+ 1 and so ρ̂ conjugates correspondingly to a representation
ρ : π1(M) → Homeo+(R). Since Σ = S2 we know that h ∈ π1(M) is central,
therefore the image of ρ is contained within a certain subgroup of Homeo+(R),
namely

ρ : π1(M) ˜→ Homeo+(S1) = {f ∈ Homeo+(R) | f(x+ 1) = f(x) + 1}.

There is a second homomorphism of interest, which we will call φ, and it is the
quotient map

φ : π1(M)→ π1(M)/〈h〉.
The group π1(M)/〈h〉 acts on a surface X, specifically X is the “universal orbifold
cover” of S2 with cone points of order α1, . . . , αn. For details of this action and a
construction of X, see [96, pp. 423 and Lemma 3.2].

We then construct a manifold M̂ as a quotient

M̂ = (X × R)/ ∼

where ∼ is defined by (x, t) ∼ (φ(g)(x), ρ(g)(t)). Then by construction, we get

π1(M) ∼= π1(M̂), and from this we can check that in fact M and M̂ are homeomor-

phic (either by explicitly computing the fractions βi/αi corresponding to M̂ and
then applying Proposition 6.10, or by using the fact that the fundamental group of
a 3-manifold determines the manifold, as long as it’s not a lens space). So, this is a
way of constructing our original manifold M , and this construction makes it clear
that M admits a horizontal, co-orientable codimension one foliation:

The planes X × {t} descend to leaves as in the torus example, and the lines
{x}×R descend to Seifert fibers. The Seifert fibers are obviously transverse to the
leaves, and provide a coherent choice of normal to the leaves as well.
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Conversely, suppose that M admits a horizontal co-orientable foliation F . Let

p : M̃ →M be the universal cover, and F̃ the pullback foliation of M̃ . The fiber h

in M pulls back to p−1(h) ∼= R, and every leaf L̃ ⊂ M̃ intersects p−1(h) transversely

exactly once. Collapsing each leaf L̃ to a point, we therefore get

M̃/F̃ ∼= R,

a copy of the reals (see [30] for full details). The action of π1(M) on M̃ by deck

transformations descends to an action on M̃/F̃ , and “co-orientable” guarantees
that the action will be order-preserving. Thus we have a representation

ρ : π1(M)→ Homeo+(R)

and it follows that π1(M) is left-orderable by applying Theorem 5.1.

Problem 6.18. Verify the details of the proof above. Consult [10, Section 6]
or [8, Proposition 6.3] if you get stuck.

The proof above sets up a ‘correspondence’ between foliations and left-orderings
in the case that M is Seifert fibred. It is worth noting that this correspondence also
extends to the case of manifolds M which are constructed by gluing together Seifert
fibred manifolds along torus boundary components, known as graph manifolds [8].
We conclude this section by considering the case of Seifert fibred homology spheres;
we are grateful to Cameron Gordon for pointing this out.

Theorem 6.19. If M is a Seifert fibred homology sphere other than the Poincaré
homology sphere Σ(2, 3, 5), then π1(M) is left-orderable.

Proof. The sphere S3 is simply-connected, so we assume M � S3. First we
note that we must have Σ = S2 and in the presentation

π1(M) = 〈γ1, . . . , γn, h | h central , γ
αj

j = h−βj , γ1 . . . γn = 1〉

we have n ≥ 3 and the integers αi are pairwise relatively prime (see for example
[97, p. 404, Theorem 12]). Now consider the group

∆(α1, α2, α3) = 〈x, y, z | xα1 = yα2 = zα3 = xyz = 1〉,
which is the so-called triangle group. If the αi ≥ 2 are pairwise relatively prime, this
is an infinite group, with the exception of {α1, α2, α3} = {2, 3, 5}, which corresponds
to M ∼= Σ(2, 3, 5). For all other cases, ∆(α1, α2, α3) is isomorphic to a group of
orientation-preserving isometries of the hyperbolic plane H2, a subgroup of index
2 of the group of isometries generated by reflection in the sides of a hyperbolic
triangle having angles π/α1, π/α2, π/α3. The case ∆(2, 3, 7) is illustrated as the
subgroup of Isom+(H2) preserving the tesselation illustrated for the Poincaré disk
model of H2 in Figure 6.3.

Now, considering the αi in increasing order, there is a surjective homomorphism
π1(M)→ ∆(α1, α2, α3) obtained by mapping

γ1 → x, γ2 → y, γ3 → z, γi → 1(i > 3), h→ 1.

Recalling that Homeo+(H2) ∼= PSL(2,R), this defines a nontrivial representation ϕ :
π1(M)→ PSL(2,R). Since the universal cover of M is contractible, M is a K(G, 1)
(Eilenberg-MacLane space) and so H2(π1(M);Z)) ∼= H2(M ;Z) ∼= H1(M ;Z) = 0.

Therefore there is no obstruction to lifting ϕ to ϕ̃ : π1(M)→ ˜PSL(2,R). As noted
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Figure 4. A tesselation of H2 corresponding to ∆(2, 3, 7).

in Example 1.15, ˜PSL(2,R) can be considered a subgroup of Homeo+(R), and so
π1(M) has a nontrivial left orderable quotient. It follows from Theorem 5.1 that
π1(M) is left-orderable.

Corollary 6.20. If M is a Seifert fibred homology sphere with infinite funda-
mental group, then M has a co-orientable horizontal foliation.
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6.4. R-covered foliations

As we saw in Theorem 5.10, every 3-manifold can be constructed from the
3-sphere by removing a family of tori and gluing them back differently [63, 64,
104]. By appropriately modifying the Reeb foliation of S3 (Example 6.5), and by
equipping each re-glued torus with a Reeb foliation (Example 6.4), it is possible
to use the Lickorish-Wallace theorem to equip any 3-manifold with a codimension
one foliation [65, 105]. Therefore we need our foliations to have a bit of added
structure in order to make the question of their existence an interesting one (just as
we asked for co-orientable and horizontal in the Seifert fibred case). The property
that one usually requires is that the codimension one foliation be taut, meaning
there is a transverse circle embedded in the 3-manifold which intersects every leaf
of the foliation. Note that every horizontal foliation of a Seifert fibred 3-manifold
is taut.

In this section, we will present a few examples of taut foliations that satisfy

the stronger condition of being R-covered: this means that the leaf space M̃/F̃ is

homeomorphic to R (here, M̃ is the universal cover of M and F̃ is the pullback

foliation of M̃). This stronger condition is sufficient to guarantee left-orderability
of the fundamental group when the foliation is also co-orientable.

Example 6.21. Consider the plane R2 and the isometries

f(x, y) = (1 + x,−y) and g(x, y) = (x, 1 + y).

These maps generate a subgroup H of the group of isometries of R2, and the
quotient space R/H is homeomorphic to the Klein bottle K.

There are two natural codimension one foliations F̃1 and F̃2 of the plane R2,
namely by horizontal and vertical lines. Since the action of H on R2 preserves both
of these foliations, each descends to a foliation Fi of K by circles. Moreover the

leaf space R2/F̃i is homeomorphic to R, so each foliation Fi of K is R-covered.

Problem 6.22. Verify the details of the preceding example. By identifying

π1(K) with the group H, describe the action of π1(K) on R2/F̃i ∼= R that arises
from each foliation Fi.

Problem 6.23. Set S = {(x, y, z) | −1 ≤ z ≤ 1} and define isometries f, g :
S → S according to the formulas

f(x, y, z) = (1 + x,−y,−z) and g(x, y, z) = (x, 1 + y, z).

As in Section 1.9, let H denote the subgroup of isometries of S generated by f and
g. Then set K×̃I := S/H, which is the twisted I-bundle over the Klein bottle K and
has the same fundamental group as K, namely π1(K×̃I) = 〈x, y, | xyx−1 = y−1〉.
The boundary of K×̃I is a torus T , and as generators of π1(T ) we take m = x2

and l = y. Then take two copies of K×̃I and glue them together to create a new
manifold M , using a homeomorphism T → T which induces the map

φ∗ =

(
p q
r s

)
relative to the bases {m, l} on each copy of T . The fundamental group of M is the
same group considered in Example 1.64, it is:

π1(M) = 〈x1, y1, x2, y2|x1y1x
−1
1 = y−1

1 , x2y2x
−1
2 = y−1

2 , x2p
1 y

q
1 = x2

2, x
2r
1 y

s
1 = y2〉
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Show that the manifold M admits a foliation F whose leaves are Klein bottles,
except for one leaf which is a torus. Show that F is R-covered, but that the foliation
is not co-orientable.

The foliations constructed in the proof of Theorem 6.15 were also R-covered,
and they are co-orientable as long as the base surface Σ used in the construction
of the Seifert fibred manifold M is an orientable surface.

6.5. The universal circle

If a 3-manifold M has nonempty boundary and its boundary is a union of tori,
then each boundary torus T has an associated inclusion map i : T ↪→ M . If the
boundary is incompressible, then the inclusion of each boundary torus induces an
injective homomorphism of fundamental groups i∗ : π1(T )→ π1(M), so that π1(M)
contains a subgroup that is isomorphic to Z⊕ Z. Subgroups that arise in this way
are called peripheral subgroups. A 3-manifold is called atoroidal if its fundamental
group π1(M) doesn’t contain any Z⊕ Z subgroups other than the peripheral ones.

It is a deep theorem of Thurston that co-orientable, taut foliations of atoroidal
3-manifolds are connected to actions of their fundamental group on the circle S1.

Theorem 6.24 (Thurston’s universal circle construction, [14]). Let M be a
closed, irreducible, atoroidal rational homology 3-sphere. If M admits a co-orientable
taut foliation, then there is a nontrivial homomorphism ρ : π1(M)→ Homeo+(S1).

While such homomorphisms can be used to introduce a circular ordering of
π1(M), a concept not studied in this book, in general they do not give left-orderings
of π1(M) unless some additional conditions are met.

Consider the covering group ˜Homeo+(S1), which can be identified as

˜Homeo+(S1) ∼= {f ∈ Homeo+(R) | f(x+ 1) = f(x) + 1}
There is a short exact sequence

1→ Z→ ˜Homeo+(S1)→ Homeo+(S1)→ 1

where the copy of Z in ˜Homeo+(S1) is generated by the function g(x) = x+ 1. So
Z is central.

If ρ : π1(M)→ Homeo+(S1) lifts to ˜Homeo+(S1) then, since ˜Homeo+(S1) is a
subgroup of Homeo+(R), every lift yields many left-orderings of π1(M) by applying
Theorem 5.1.

Since ˜Homeo+(S1) is a central extension, the obstruction to that lifting is the
Euler class of ρ, which is an element of the cohomology group H2(π1(M);Z). One
argues that H2(π1(M);Z) is isomorphic with H1(M ;Z), a finite group but nontriv-
ial unless M is a Z-homology sphere. Thus the Euler class may be nonzero, though
it will have finite order. Nevertheless, Calegari and Dunfield [14] argue by direct
construction that if one restricts ρ to the commutator subgroup [π1(M), π1(M)]

then it lifts to ˜Homeo+(S1). We refer the reader to [14] for details. This shows the
following.

Theorem 6.25. [14] Let M be a closed, irreducible, atoroidal rational homology
3-sphere that admits a co-orientable, taut foliation. Then the commutator subgroup
[π1(M), π1(M)] is left-orderable—in particular, π1(M) is virtually left-orderable.





CHAPTER 7

Left-orderings of the braid groups

No study of left-orderings and topology is complete without considering the
braid groups, as they exhibit many deep connections with both subjects. In the
first two sections we define the standard left-ordering of Bn, known as the Dehornoy
ordering, and consider whether or not the braid groups are locally indicable or
bi-orderable as well. In the third section we prove that the braid groups are left-
orderable for n ≥ 3 using hyperbolic geometry, and then finish the chapter by
showing how left-orderings of the braid groups can be connected with knot theory.

First we recall one of the many definitions of the braid group Bn. Consider n
points {p1, . . . , pn} in the plane, which for concreteness we take to be evenly spaced
along the x-axis inside the unit disk D. Let βi : [0, 1]→ D× [0, 1] be a path that is
the identity in the second coordinate, satisfying βi(0) = (pi, 0) and βi(1) = (pj , 1)
for some j ∈ {1, . . . , n} and intersecting each slice D×{t} exactly once. An n-braid
is a tuple of n such paths

β = (β1(t), β2(t), . . . , βn(t))

that do not cross one another, in the sense that βi(t) 6= βj(t) whenever i 6= j. Two
n-braids are equivalent if one can be continuously deformed into the other through
n-braids. The braid group Bn is then the collection of all equivalence classes, the
group operation is concatenation of representative n-braids. That is:

(ββ′)i(t) =

{
βi(2t) if 0 ≤ t ≤ 1/2

β′j(2t− 1) if 1/2 ≤ t ≤ 1.

In the formula above, the subscript j of β′j is chosen so that βi(1) = (pj , 1). The
identity is the braid consisting of n straight lines βi(t) = (pi, t) for all t and the
inverse of a braid β is given by β(1− t), its reflection.

Let σi denote the equivalence class of an n-braid that consists of n− 2 straight
lines, except for the paths βi(t) and βi+1(t), which cross each other exactly once
as in Figure 1. As shown by E. Artin [2, 3] the braid group Bn is generated by
{σ1, . . . , σn−1}, and it has presentation

Bn =

〈
σ1, . . . , σn−1

σiσj = σjσi if |i− j| > 1
σiσjσi = σjσiσj if |i− j| = 1

〉
Understood this way, every braid β is an equivalence class of words in the

generators σi.

Problem 7.1. Verify the following identities in Bn, if |i− j| = 1:

σiσjσ
−1
i = σ−1

j σiσj σiσ
−1
j σ−1

i = σ−1
j σ−1

i σj

Show that the words σ2
1σ
−1
2 σ−1

1 and σ−1
2 σ−1

1 σ2
2 represent the same braid in B3.

75
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Figure 1. The generator σ3 in the braid group B6.

Problem 7.2. Show that in Bn, all the generators σi are conjugate to each
other. Show that the abelianization of Bn, n ≥ 2 is isomorphic with Z, and that the
commutator subgroup [Bn, Bn] is exactly the set of braids represented by words with
total exponent sum zero in the generators σi.

In addition to the abelianization homomorphism Bn → Z, there is also a homo-
morphism onto the symmetric group Sn. Thinking of Sn as a group of permutations
of the points {p1, . . . , pn}, the map Bn → Sn associates a permutation to each braid
by “following the strands.”1 So, for example, the image of the braid σi is the trans-
position (pi, pi+1) ∈ Sn. ,

Problem 7.3. Verify that map Bn → Sn described above is well-defined, and
is indeed a homomorphism.

7.1. Orderability properties of the braid groups

Before turning to left-orderability of the braid groups, we first determine pre-
cisely which braid groups are bi-orderable and which are locally indicable.

Our first observation is that the braid group Bn is bi-orderable for n = 2, and
not bi-orderable when n > 2. An easy way to prove this is by checking that the
braid σ1σ

−1
2 is conjugate to its inverse.

Problem 7.4. Show that in Bn, n > 2 the following equation holds:

(σ1σ2σ1)(σ1σ
−1
2 )(σ1σ2σ1)−1 = σ2σ

−1
1

Verify that σ1σ
−1
2 and σ2σ

−1
1 are distinct braids (Hint: Use the homomorphism

Bn → Sn).

Problem 7.5. Verify that Bn for n > 2 does not have unique roots. (Hint:
Consider σ1σ2 and σ2σ1, and verify that they are distinct by using the map Bn →
Sn).

1This gives a homomorphism as long as we adopt the left-to-right convention for composing
permutations, so that (1, 2)(1, 3) = (1, 2, 3) and not (1, 2)(1, 3) = (1, 3, 2), for example.
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With B2 being bi-orderable, we turn our attention to Bn for n > 2 and de-
termine which of these groups are locally indicable. We begin with a case we’ve
encountered before:

Theorem 7.6. The group B3 is locally indicable.

This is because B3 is isomorphic with the trefoil knot group, according to the
computation of Example 4.7. So B3 is locally indicable since, by Theorem 4.9, knot
groups are locally indicable.

For the 4-strand case our arguments rely on [36], which provides a description
of the commutator subgroup of Bn for all n. When n = 4 the structure of the
commutator subgroup will allow us to conclude that B4 is locally indicable.

Theorem 7.7. The braid group B4 is locally indicable.

Proof. According to [36], the commutator subgroup of B4 is isomorphic to a
certain semidirect product F2 n F2. In particular there’s a short exact sequence

1→ F2 → [B4, B4]→ F2 → 1.

Since F2 is bi-orderable, it is locally indicable by Theorem 2.19, then by Problem
4.5 the group [B4, B4] is locally indicable. Thus from the short exact sequence

1→ [B4, B4]→ B4 → Z→ 1

and by another application of Problem 4.5, B4 is locally indicable as well.

On the other hand, for n ≥ 5 the structure of the commutator subgroup shows
that Bn is NOT locally indicable.

Theorem 7.8. The braid group Bn is not locally indicable for n ≥ 5.

Proof. To prove that B5 is not locally indicable, we will exhibit a finitely
generated subgroup H ⊂ B5 whose abelianization is trivial, so that there is no
surjection H → Z. Then since B5 is a subgroup of Bn for all n > 5, it follows that
Bn is not locally indicable for n ≥ 5.

Let H be the subgroup of B5 generated by the braids β1, . . . , β5 where

β1 = σ−1
1 σ2, β2 = σ2σ

−1
1 , β3 = σ1σ2σ

−2
1 , β4 = σ3σ

−1
1 , β5 = σ4σ

−1
1 .

According to [36], the subgroup H is actually the commutator subgroup of B5.
One can verify that the following relations hold among the βi’s:

(1) β1β5 = β5β2

(2) β2β5 = β5β3

(3) β1β3 = β2

(4) β1β4β3 = β4β2β4

(5) β4β5β4 = β5β4β5

Now we consider what happens upon abelianizing the subgroup H. Relations (1)
and (2) and (3) give β1 = β2 = β3 = 1. Using this equality reduces relation (4) to
β4 = β2

4 , so β4 = 1. Lastly relation (5) now easily gives β5 = 1, so H/H ′ = {1}.

Problem 7.9. Verify the relations (1) - (5) above.
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In light of the fact that Bn is not locally indicable when n ≥ 5, it might come
as a surprise that Bn for n ≥ 2 has a finite index subgroup that is bi-orderable.
This subgroup is the subgroup of pure braids, denoted Pn. Recalling our definition
of a braid as an n-tuple of paths

β = (β1(t), β2(t), . . . , βn(t)),

a pure braid is a braid β for which βi(1) = (pi, 1) for all i. In other words, every
strand in the braid starts and ends at the same point pi. The subgroup Pn also
arises as the kernel of the short exact sequence

1→ Pn → Bn → Sn → 1,

and therefore Pn is a subgroup of index |Sn| = n! in Bn. Here, Sn is the group of
permutations of n elements.

Theorem 7.10. [91, 56] The group Pn is bi-orderable for n ≥ 2.

The idea of the proof is a technique called Artin combing [3], which is used
to show that Pn is an iterated semidirect product of free groups, which are bi-
orderable, as shown in Theorem 3.4. We refer the reader to [56] for details and a
construction of an explicit bi-ordering.

7.2. The Dehornoy ordering of Bn

Next we’ll see that Bn is left-orderable for all n — in fact in uncountably
many ways — though there is a preferred ‘standard’ ordering of Bn which has
a number of pleasing algebraic and combinatorial properties. Moreover, like the
Magnus ordering of the free groups the standard ordering of Bn is computable, in
the sense that one can decide via calculation which of two braids is bigger than the
other.

The Dehornoy ordering (also known as the standard ordering, or the σ-ordering)
of the braid group Bn is a left-ordering that is defined in terms of representative
words of braids as follows: A word w in the generators σ1, . . . , σn−1 is called i-
positive (respectively i-negative) if w contains at least one occurence of σi, no
occurences of σ1, . . . , σi−1, and every occurence of σi has positive (respectively
negative) exponent. A braid β ∈ Bn is called i-positive (respectively i-negative) if
it admits a representative word w in the generators σ1, . . . , σn−1 that is i-positive
(respectively i-negative). The Dehornoy ordering of the braid group Bn is the or-
dering whose positive cone PD is the set of all braids β ∈ Bn that are i-positive for
some i. Braids β, β′ satisfy β <D β′ if and only if β−1β′ ∈ PD.

Example 7.11. The word σ2
1σ
−1
2 σ−1

1 is neither i-positive nor i-negative for any
i, so the braid that it represents may be either positive or negative in the Dehornoy
ordering. But by Problem 7.1 the braid is also represented by the word σ−1

2 σ−1
1 σ2

2 ,
which is 1-negative. Therefore it is negative in the Dehornoy ordering, and we write
σ2

1σ
−1
2 σ−1

1 <D 1.

Problem 7.12. Show that the smallest positive element of the Dehornoy or-
dering of Bn is σn−1.

To show that the positive cone of the Dehornoy ordering is well-defined is a
nontrivial task, so we will only cover the case of B3 here; moreover there is already
an entire book on the topic [28]. However we will provide a proof in the coming
sections that Bn is left-orderable for n ≥ 3 by using hyperbolic geometry.
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That PD is well-defined and is the positive cone of a left-ordering in the case
n = 3 will follow from the next theorem and problem.

Theorem 7.13. Every braid β ∈ B3 is either a power of σ2, or admits a
1-positive representative word, or admits a 1-negative representative word.

Proof. This argument is due to A. Navas. We can rewrite the braid group
B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉 as 〈a, b | ba2b = a〉 by making the substitution
a = σ1σ2 and b = σ−1

2 . In this new notation, we can prove the theorem by showing
that every word w in a and b which is not a power of b is equivalent to a word
containing only positive (or only negative) powers of a.

First note that a3 is central, since

ba3 = (ba2)a = (ab−1)a = a(b−1a) = a(a2b) = a3b

Therefore, by using the identity b−1a3 = a2ba2 and inserting powers of a3 as nec-
essary, we can assume that w = w′a3`, where w′ consists of only positive powers
of a and b. Moreover, we can arrange for all powers of a appearing in w′ to have
exponent less than or equal to two.

Next we can use ba2b = a to replace the leftmost occurence of ba2b in w′, and
then shuffle any resulting powers of a3 to the right. By iterating this process, we
can assume that

w′ = ar1bk1abk2 . . . abknar2

where 0 ≤ rj ≤ 2 for j = 1, 2 and ki ≥ 1 for all i.
With these assumptions we consider w = w′a3`. If ` ≥ 0 we are done since

every generator occurs with only positive exponents, so assume ` < 0. In this case
w′a−3 in fact admits a representative word containing only negative powers of a,
which shows that w = w′a3` does as well. This follows from applying the identity
abka−1 = (a−1b−1)k as follows

w′a−3 = ar1bk1a . . . bkn−1(abkna−1)ar2−2 = ar1bk1a . . . abkn−1(a−1b−1)knar2−2

and observing that the resulting word has abkn−1a−1 as a subword. So, we are in a
position to apply the same identity again. Since all the ki’s are positive, iterating
the application of this identity yields a word with only negative occurences of a.

This theorem shows that the subset PD of all i-positive braids of B3 satisfies
B3 = PD ∪ P−1

D . The next problem completes the proof that PD is the positive

cone of a left-ordering, by showing that 1 /∈ PD, and so PD ∩ P−1
D = ∅.

Problem 7.14. Let F3 denote the free group with generators {x1, x2, x3}, and
let σ̂i : F3 → F3 for i = 1, 2 denote the automorphism

σ̂i(xj) =


x2
ixi+1 if j = i
x−1
i+1x

−1
i xi+1 if j = i+ 1

xj if j 6= i, i+ 1

There is an injective homomorphism B3 → Aut(F3) defined by σi 7→ σ̂i [103, 100],
and it gives an action of B3 on F3. Show that any 1-positive braid β yields an

automorphism β̂ such that β̂(x1) begins with x2
1. Conclude that PD ∩ P−1

D = ∅.

Note that the previous exercise can be easily generalized to arbitrary n, and
so provides one way of proving a key step in the proof that <D is well-defined for
all n.
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7.3. Thurston’s orderings of Bn

First we must cover a bit of hyperbolic geometry in order to describe Thurston’s
orderings. For a more complete treatment of this material, see [16]. The methods
of this section, due to W. Thurston, first appeared in [99].

7.3.1. Braids as mapping class groups. The mapping class group of a
punctured, compact, connected, oriented surface Σ is defined as follows. Let
P = {p1, . . . , pn} denote a finite subset of distinct points on Σ that we will call
punctures (one often removes the points p1, . . . , pn and speaks of the holes that
they leave behind). Let Homeo+(Σ, P ) denote the group of orientation-preserving
homeomorphisms h : Σ → Σ satisfying h(P ) = P that restrict to the identity on
the boundary of Σ. The mapping class group of Σ with punctures p1, . . . , pn is the
group Mod(Σ, P ) of isotopy classes of these homeomorphisms, in other words

Mod(Σ, P ) = π0(Homeo+(Σ, P ))

The group operation is composition of representative homeomorphisms.
Our interest will be focused on the mapping class group of the closed unit disk

in C, which we’ll denote as D. For each n ≥ 0 we specify the points p1, . . . , pn to be
n evenly spaced points along the real axis, write Dn for the disk with these points
removed (see Figure 2), and write Mod(Dn) instead of Mod(D, P ).

p1 p2 p3 pn

Figure 2. The disk Dn with n evenly spaced punctures on the real axis.

Let’s calculate our first mapping class group.

Lemma 7.15. (Alexander’s trick) The mapping class group of D is trivial.

Proof. Let h be any homeomorphism of D with itself that restricts to the
identity on the boundary. Define

F (z, t) =

{
(1− t)h( z

1−t ) if 0 ≤ |z| < 1− t
z if 1− t ≤ |z| ≤ 1

and define F (z, 1) : D → D to be the identity. Then F provides an isotopy of h
with the identity, by doing the original map h on a small disk of radius 1 − t at
time t and doing the identity outside. At time t = 1 the map is the identity on the
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whole disk. Since every homeomorphism h of the disk is isotopic to the identity in
this way, Mod(D) is trivial.

Now let us consider the group Mod(Dn), and how to identify this group with
the braid group. Given a homeomorphism h : D → D representing an element [h]
of Mod(Dn), h is not isotopic to the identity via an isotopy that fixes punctures
unless [h] is the identity. However, if we disregard the punctures and consider [h]
as an element of Mod(D) then there is an isotopy taking h to the identity since
Mod(D) is trivial. So, let F (z, t) denote an isotopy which carries h to the identity.
As t ranges from 0 to 1, the images of the punctures p1, . . . , pn under the function
F (−, t) trace out non-intersecting paths in the cylinder D× [0, 1], as in Figure 3.

F (z, 0)

F (z, 1)

Figure 3. The braid associated to an element of Mod(D3).

The images of these paths determine a braid, and so determine an element
of the group Bn. This correspondence is actually an isomorphism, though the
details are somewhat involved and will not be covered here (see [6] for full details).
However we have described the key idea behind the theorem:

Theorem 7.16. The braid group Bn is isomorphic to the mapping class group
Mod(Dn).

Problem 7.17. Describe a homeomorphism of the disc Dn that represents an
equivalence class whose corresponding braid is the generator σi. Verify that your
homeomorphisms of Dn satisfy, up to isotopy, the braid relations σiσj = σjσi if
|i− j| > 1 and σiσjσi = σjσiσj if |i− j| = 1.

7.3.2. A hyperbolic metric on the n-punctured disk. For a fixed point
z in the interior of D, define an inner product on the tangent vectors (thought of
as complex numbers v, w) at z by the formula

gz(v, w) = 4
Re(vw̄)

(1− |z|2)2
.

This allows us to calculate the length of a tangent vector w at z as

gz(w,w)1/2 =

(
4

Re(ww̄)

(1− |z|2)2

)1/2

= 2
|w|

1− |z|2
.
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Therefore, the length of a curve γ : [0, 1] → int(D) can be calculated by inte-
grating the length of the tangent vector along the curve, yielding

`H(γ) =

∫ 1

0

2|γ′(t)|
1− |γ(t)|2

dt

This gives the interior of the unit disk a hyperbolic metric, and equipped with this
idea of length of curves we’ll denote the open disk by DH, it is called the Poincaré
disk model .

The geodesics in DH are Euclidean circles meeting the boundary at right angles,
and straight lines passing through 0, as in Figure 4.

Figure 4. Examples of geodesics in DH.

The distance between two points v, w ∈ DH is denoted d(v, w) and is calculated
as the length of the shortest curve (i.e. a geodesic) between them. The isometries
of DH are the Möbius transformations of the form

fθ,a(z) = eiθ
(
z − a
1− āz

)
where |a| < 1.

Problem 7.18. Using the fact that the straight line joining any point z to 0 is a

geodesic, show that the distance between z ∈ DH and 0 is 2tanh−1(|z|) = log
(
|z|+1
1−|z|

)
.

Problem 7.19. Show that the group of isometries of DH acts transitively on
DH, by exhibiting a Möbius transformation that will map an arbitrary w ∈ DH to
0. Use isometries and Problem 7.18 to show that for any two points v, w ∈ DH the
distance between them is

d(v, w) = 2tanh−1

∣∣∣∣ w − zz̄w − 1

∣∣∣∣
Now we put a hyperbolic metric on the disk Dn, n ≥ 2, such that the boundary

is a geodesic of any length we please and the area of Dn is finite. To do this, we
start with the Poincaré disk as described above and take two copies of the region
indicated in Figure 5.
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γ1

γ2

γ3

γ4 γn

γn+1

Figure 5. A piece of DH that we’ll use to build Dn.

p1 p2 p3 pn

γ1 γ2 γ3 γn+1

Figure 6. The disk Dn with the images of the curves γi indicated
by dotted lines.

Isometrically identify the two copies of each boundary curve γi. In this way
the two pieces of DH that we cut out as in Figure 5 will glue together to give a disk
with n punctures, see Figure 6. Each half of Dn comes equipped with a hyperbolic
metric gz(v, w) inherited from DH. We use the inherited hyperbolic metrics on each
half of Dn to define a continuously varying hyperbolic metric on Dn for which each
of the punctures is ‘pushed off to infinity’ to form what is called a cusp. The area of
a cusp is finite, and consequently Dn has finite area when equipped with the metric
we have just constructed.

7.3.3. A copy of the real line with a Bn-action. In this section, we will
prove that the braid groups are left-orderable by constructing an order-preserving,
effective action of Bn on the real line by using hyperbolic geometry. Since the group
Homeo+(R) is left-orderable, it follows that Bn is left-orderable. The copy of the R
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that we will equip with a Bn-action arises as the boundary of a certain hyperbolic
space, so first a word about such boundaries.

Given a hyperbolic space X with distance d(x, y), parameterize the geodesic
rays γ : [0,∞) → X by arc length. Then two rays γ, γ′ are said to be a bounded
distance apart if there exists a distance D > 0 such that supt{d(γ(t), γ′(t))} ≤ D.
The property of being a bounded distance apart is an equivalence relation on the
set of geodesic rays, and we define the boundary ∂X to be the set of equivalence
classes. For a mathematically rigorous treatment of what follows, this is the required
notion of boundary. However for the space DH your intuition likely tells you that
∂DH should look like the circle ∂D, and this is correct. The boundary of DH is
homeomorphic to a circle S1

∞, called the circle at infinity, and in fact each point on
the boundary admits a representative geodesic ray γ : [0,∞)→ DH with γ(0) = 0,
which is a (Euclidean) straight line. We will rely upon this in the arguments which
follow.

Denote the universal cover of Dn by D̃n, fix a point x0 ∈ ∂Dn and a point

x̃0 ∈ ∂D̃n with p(x̃0) = x0.

Proposition 7.20. For n ≥ 2, there exists an action of Mod(Dn) on D̃n such
that every element of Mod(Dn) fixes the point x̃0.

Problem 7.21. Prove the previous proposition. (Hint: Consider cutting open
Dn along the curves γ1, γ2, . . . , γn, but not γn+1, to produce a simply connected

space X. There is an inclusion i : X → Dn which can be lifted to ĩγ : X → D̃n and

used to build an action of Mod(Dn) on D̃n).

The action of Mod(Dn) on D̃n can be extended to an action on ∂D̃n, though
we will not prove this here. The difficulty in proving this claim arises from the fact

that for a lifted homeomorphism h̃ and a geodesic ray γ representing [γ] ∈ ∂D̃n,

one would like to define h̃ · [γ] = [h̃(γ)]. However, h̃ is not an isometry and so h̃(γ)
is not a geodesic, and thus there is work to be done in correcting this problem. For
full details, see [32, Chapter 1].

Next we consider how the action on ∂D̃n gives us an action on R. First, a surface
with a hyperbolic distance as above is complete if it is complete as a metric space,
the disk Dn is complete with respect to the hyperbolic metric we’ve introduced. The
hyperbolic metric on Dn pulls back to define a hyperbolic metric on the universal

cover D̃n, and as the universal cover of a complete space is complete, D̃n is also
a complete metric space. Every complete, connected, simply connected hyperbolic
surface is isometric to DH or a subset of DH [16, Theorem 2.2]. Thus there is an

isometric embedding i : D̃n → DH, but we will write D̃n in place of i(D̃n). Moreover,

since isometries act transitively on DH we can assume that x̃0 = 0 and picture D̃n
as a subset of DH as in Figure 7.

Writing p : D̃n → Dn for the covering map, the boundary ∂D̃n consists of points
in p−1(∂Dn), and a set of points X in S1

∞. The points of X are represented by

geodesics in D̃n, which we can think of as geodesics in DH emanating from 0 by

employing the embedding D̃n ⊂ DH. The action of Mod(Dn) is already defined on
p−1(∂Dn), and the action uniquely extends to the set X.

Last, let C denote the component of p−1(∂Dn) containing 0. Since C is fixed

by the action of Mod(Dn), there is an action of Mod(Dn) on ∂D̃n \C by homeomor-

phisms. The set ∂D̃n \ C can be naturally identified with (0, π), since each point
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C

x0 = 0

D̃n

Figure 7. The embedded copy of D̃n in DH .

corresponds to a unique geodesic ray γ : [0,∞) → DH with γ(0) = 0 and whose
angle with C lies in (0, π). Moreover, since the endpoints of C are fixed by the
action of Mod(Dn), the action is order-preserving.

Problem 7.22. Show that the action of Mod(Dn) on (0, π) is effective, since
any element [h] ∈ Mod(Dn) that fixes every point in (0, π) would, in particular, fix
every lift of x0 ∈ Dn and so be the identity.

Thus we have constructed an effective, order-preserving action of Bn on R,
which proves the following:

Theorem 7.23. The braid groups Bn are left-orderable for n ≥ 2.

7.3.4. Different left-orderings from Thurston’s construction. Given an
action of a group G on R by order-preserving homeomorphisms, recall that we can
construct a left-ordering of G using the procedure in Example 1.11. That procedure
requires a choice of countable dense sequence x1, x2, . . . of real numbers, and then
for any two distinct elements g, h ∈ G, if i is the lowest subscript for which g(xi)
and h(xi) are different we declare g < h if g(xi) < h(xi) and h < g otherwise. While
not emphasized in that example, it is clear that different choices of sequences can
give rise to different left-orderings of G (for example, by simply re-indexing the
same sequence one can potentially get a new left-ordering).

Here, we’ll investigate how different choices of sequences can give rise to differ-
ent orderings of Bn by applying Thurston’s construction. According to the setup

of Theorem 7.23, Bn acts on a copy of R that is identified with ∂D̃n, each point of
which corresponds to a geodesic ray γ̃ : [0,∞)→ DH. Thus every left-ordering aris-
ing from Theorem 7.23 depends on a choice of geodesic rays α̃1, α̃2, . . . emanating

from 0 and corresponding to a dense sequence of points in ∂D̃n.
Let’s consider the particular case of B4 to illustrate what information can be

gleaned from a chosen sequence of geodesic rays. We begin with geodesic rays
{α̃1, α̃2, . . .} starting at 0, where the image of α̃1 under the projection map p :

D̃4 → D4 appears as on the left of Figure 8, and α̃i are arbitrary for i ≥ 2. Note
that this image in D4 uniquely determines the lift α̃1, since we have specified that
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α̃1(0) = 0. Let <α denote the corresponding left-ordering of B4 that is defined as
in the first paragraph of this section.

× ×

Figure 8. The curve α1 on the left, and α1 after applying the
homeomorphism h3 on the right.

Fix representative homeomorphisms hi of elements [hi] ∈ Mod(D4), where hi
swaps the punctures pi and pi+1 and [hi] corresponds to the generator σi of B4.
Note that we can choose a representative homeomorphism h1 whose support is

disjoint from α1, and thus in the cover D̃4 the corresponding action of [h1] fixes the
lift α̃1.

By Problem 2.16, the stabilizer of α̃1 is a convex subgroup C in the left-ordering
<α. On the other hand, h3 is not in C, because [h3] acts nontrivially on α̃1. We
can see this by examining Figure 8, and considering the intersection of α1 and
h3(α1) with the curves γ1, γ2, . . . , γ5 which connect the punctures to one another,
and to the boundary. Starting from the “X”, the curve α1 intersects the γi in the
order γ3, γ1, γ4, and so the lift α̃1 intersects lifts of the γi’s in that same order.
Considering h3(α1), we see a different order of intersection with the γi’s, namely

γ3, γ1, γ5, γ4, γ3, and so the lift h̃3(α1) intersects the lifts of the γi’s in this order.

Problem 7.24. Argue that h3(α1) and α1 determine distinct points in ∂D̃n,
since each intersects the γi’s in a different order.

Problem 7.25. Argue that when α1 is replaced by the curve α′1 shown in Fig-
ure 9, the resulting left-ordering <α is different.

Thus different choices of geodesics α1, α2, . . . in Dn correspond to different

choices of geodesic rays α̃1, α̃2, . . . in D̃n, each giving rise to a potentially distinct
left-ordering of Bn. In fact, the Dehornoy ordering also arises from Thurston’s
construction, by choosing α1 to be the curve in Figure 10. In this case it happens
that the action of Bn is free on the orbit of α̃1, so the choice of α1 determines <D
and the rest of the sequence {α̃2, α̃3, . . .} is immaterial. See [28, Chapter XIII] for
full details of this construction of the Dehornoy ordering.

7.3.5. Generalizing to other mapping class groups. The remarkable fea-
ture of Thurston’s approach is that it readily generalizes to other mapping class
groups, the details of this generalization are outlined in the problems below.

Recall from Chapter 3 that closed, connected, orientable surfaces other than
the sphere are all connect sums of tori. For orientable surfaces with boundary
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×

Figure 9. The curve α′1 .

p1 p2 p3 pn

Figure 10. A geodesic that determines the Dehornoy ordering of Bn.

(other than the sphere with k > 0 disks removed), every surface is again a connect
sum of tori, but where one of the tori in the decomposition has k > 0 open disks
removed. The genus of such a surface is, as before, the number of tori in its connect
sum decomposition. A sphere, with or without disks removed, has genus 0.

Let Σbg,n be an orientable, connected surface with genus g, b boundary compo-

nents, and n punctures. The Euler characteristic of Σbg,n is

χ(Σbg,n) = 2− 2g − n− b

Problem 7.26. A “pair of pants” is a surface that has genus zero and three
boundary components as in Figure 11. If 2 − 2g − b < 0, show that after possibly
isotoping Σbg,n to reposition the punctures, the surface Σbg,n can be cut open along
simple closed curves so that the resulting pieces are pairs of pants and a single
annulus with n punctures.

Problem 7.27. Show that every surface with boundary satisfying χ(Σbg,n) < 0
admits a hyperbolic metric, by breaking the argument into cases as follows. If



88 7. LEFT-ORDERINGS OF THE BRAID GROUPS

Figure 11. A “pair of pants” surface.

2−2g−b ≥ 0 then we are in one of the following cases (recall that we are assuming
b > 0, which forces g = 0 if 2− 2g − b ≥ 0):

(1) If g = 0, b = 1 and n ≥ 2 then the surface is a punctured disk. We dealt
with this case in Section 7.3.2.

(2) If g = 0, b = 2 and n ≥ 1 then the surface is an annulus with punctures.
Put a hyperbolic metric on this surface using the techniques of Section
7.3.2.

On the other hand, if 2− 2g− b < 0 and n ≥ 0, show that one can put a hyperbolic
metric on each the pieces in the decomposition of Problem 7.26 and glue the pieces
together.

Recall that the mapping class group of a surface with punctures P = {p1, . . . , pn}
is written Mod(Σbg,n, P ). However when our surface is connected, we need not
choose a specific set of punctures {p1, . . . , pn} (since all n-element sets of points are
isotopic to one another in Σbg,n), and so we simplify the notation to Mod(Σbg,n).

Problem 7.28. Assume that b > 0. By making appropriate changes to the

proof of Proposition 7.20, show that Mod(Σbg,n) acts on Σ̃bg,n and that the action

fixes a chosen point x0 ∈ ∂Σ̃bg,n.

Assume that χ(Σbg,n) < 0 and b > 0. The action constructed in the previous

exercise extends to the boundary ∂Σ̃bg,n, and as in the case of the disk with punc-

tures, Σ̃bg,n is a complete, connected, simply connected hyperbolic surface and so
can be isometrically embedded in DH [16, Theorem 2.2]. By arguments more or less
identical to the case of Dn, one can use this embedding to show that the action of

Mod(Σbg,n) on ∂Σ̃bg,n is actually a faithful, order-preserving action on a space that
is homeomorphic to R. From this, we have the following theorem, due to Rourke
and Wiest [92], who also proved it for the nonorientable case. See also [99].

Theorem 7.29. If b > 0 and χ(Σbg,n) < 0, the mapping class group Mod(Σbg,n)
is left-orderable.

Note that the restriction b > 0 is necessary: if b = 0 then Mod(Σ0
g,n) has ele-

ments of finite order. One kind of finite-order homeomorphism is a hyperelliptic in-
volution, depicted in Figure 12. Because of this Mod(Σ0

g,n) cannot be left-orderable.
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Figure 12. Rotation by an angle of π radians about the dotted
line is an example of a hyperelliptic involution, and has order two.

Despite having elements of finite order, the mapping class group of a surface
without boundary is known to have a torsion free finite-index subgroup [32, Theo-
rem 6.9].

Question 7.30. Does the mapping class group of a surface without boundary
have a left-orderable finite-index subgroup?

7.4. Applications of the Dehornoy ordering to knot theory

To connect left-orderings of the braid groups with knot theory, we first have to

connect braids with knots and links. Every braid β gives rise to a knot or link β̂,
called the closure of β, via the following construction. Consider D× [0, 1] embedded
in R3 in the natural way, with points pi spaced evenly along the x-axis inside D2.

Given a braid
β = (β1(t), β2(t), . . . , βn(t))

in D × [0, 1], create the closure β̂ by connecting (pi, 0) to (pi, 1) using n non-
intersecting paths in the plane y = 0, as in Figure 13.

β

z

x
y

Figure 13. How to create the knot or link β̂ from the braid β.

Problem 7.31. Determine necessary and sufficient conditions on the braid β

which ensure that β̂ is a knot (as opposed to a link).
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That some knots can be expressed as the closure of a braid is no surprise–the
trefoil, for example, is easily seen to be the closure of the braid σ3

1 ∈ B2, as in
Figure 14. On the other hand, it may come as a surprise that every knot can be
written as the closure of a braid.

Figure 14. The trefoil as the closure of σ3
1 in B2.

Theorem 7.32 (Alexander, 1923). Given a knot K, there exists n > 1 and

β ∈ Bn such that K = β̂.

The idea behind the proof is illustrated in the next example.

Example 7.33. Given a diagram of a knot K as in Figure 15, choose a point
p in one of the bounded regions. Using p as an axis of rotation, imagine an arrow
rotating about p and pointing towards your pen as you trace the knot. As your
pen moves, colour the arc normally whenever the arrow is rotating clockwise, and
colour the arc in bold whenever the arrow is rotating anticlockwise. See Figure
15 (a), where the first anticlockwise segment encountered, starting from the little
arrow, is coloured bold. After colouring, move bold arcs to the other side of the axis
as in Figure 15 (b) and smooth out the remaining arcs. Now when you trace along
the knot a second time, the previously bold arc now corresponds to a segment of
clockwise rotation. Repeat this operation until there are no anticlockwise segments
remaining; the resulting diagram is a closed braid. Finally cut open along a dotted
line which avoids all crossings, as in Figure 15 (c). Starting from the cut, we read
off in the clockwise direction: σ2

2σ1σ
−1
2 σk1 . Thus K is closure of σ2

2σ1σ
−1
2 σk1 ∈ B3.

Problem 7.34. Write each of the knots in Figure 16 as the closure of a braid.

Different braids can give equivalent knots or links upon taking their closures.

For example, if α and β are braids in Bn, then β̂ and α̂βα−1 are the same knot or
link. However there are many less obvious examples, indeed two braids which close
to give the same knot or link need not even have the same number of strands.

This is explained by a result of Markov, which says that any two braids whose
closures represent the same knot or link are related by a series of ‘Markov moves’
(and their inverses). The two types of Markov moves are:

• Replace a braid β ∈ Bn with a conjugate αβα−1, where α ∈ Bn (conju-
gation).
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k twists

(a)

k twists

k twists

(b)

(c)

cut

Figure 15. How to write a knot K as a closed braid.

Figure 16. From left to right: the figure eight, the knots 52 and 63.

• Replace a braid β ∈ Bn with the braid βσ±1
n ∈ Bn+1 (stabilization, with

inverse destabilization).

Note that stabilization and destabilization change the number of strands.

Problem 7.35. By manipulating the corresponding knot diagrams, show that
the braids σ3

1 ∈ B2 and (σ1σ2)2 ∈ B3 both close to give the same knot (the trefoil).
Give a sequence of Markov moves relating these two braids.

By using these braid moves, as well as more complex moves called flypes and
exchange moves, one can show:

Theorem 7.36. [68] Let β ∈ Bn. If β̂ is not prime, then there exists α ∈ Bn
and γ, γ′ ∈ Bn−1 such that

αβα−1 = γσn−1γ
′σ−1
n−1.

In other words, β is conjugate to a braid which appears as in Figure 17.

The goal of the following exercises is to show how this theorem can be combined
with the Dehornoy ordering to detect when certain links are prime (recall from
Chapter 4 that a knot or link is prime if it cannot be decomposed as a connect
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γ

γ′

Figure 17. The form of the braid from Theorem 7.36, in the case
n = 5.

sum of two nontrivial knots or links). To begin, we introduce Garside’s “half twist”
braid

∆n = (σ1σ2 · · ·σn−1)(σ1σ2 · · ·σn−2) · · · (σ1σ2)(σ1).

which appears as in Figure 18.
The centre of Bn is an infinite cyclic subgroup generated by the “ full twist”

on n strands, and so its generator is the square of the Garside half twist, ∆2
n.

Problem 7.37. [68], [28] Suppose that α, β ∈ Bn. Then in any left-ordering
≺ of Bn, we have:

(1) If α ≺ ∆2k
n and β ≺ ∆2l

n , then αβ ≺ ∆2k+2l
n ,

(2) If α ≺ ∆2k
n then ∆−2k

n ≺ α−1,
(3) If α � ∆2k

n and β � ∆2l
n , then αβ � ∆2k+2l

n .

Figure 18. The half-twist braid ∆5.
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Problem 7.38. Show that for all β ∈ Bn there exists k ∈ Z such that ∆2k
n ≤D

β <D ∆2k+2
n (In fact, this holds for all left-orderings of Bn, not just for the De-

hornoy ordering <D). Use this fact, together with the previous problem, to show
that if α, β ∈ Bn and ∆2k

n ≤D β <D ∆2k+2
n then ∆2k−2

n ≤D αβα−1 <D ∆2k+4
n .

Problem 7.39. Verify that ∆σ±1
i ∆−1 = σ±1

n−i, and so by Theorem 7.36 if β̂ is

a non-prime link then β is conjugate to a braid of the form γσ1γ
′σ−1

1 , where γ, γ′

contain no occurences of σ±1
1 .

Show that the inequalities prepared in the previous problems then imply that

whenever β̂ is a non-prime link, we have

∆−4
n <D β <D ∆4

n.

Since the Dehornoy ordering is computable, in the sense that there are algo-
rithms for determining when a given braid is positive, the contrapositive of the last
problem provides a test for primeness of a link.

Corollary 7.40. If either β <D ∆−4
n or β >D ∆4

n, then β̂ is a prime link.

We can also easily generate prime links this way—for example, if β >D 1 then

β̂∆4
n is always a prime link.
The Dehornoy ordering can also be connected with other geometric and al-

gebraic properties of knots, aside from primeness. For example, restricting our

attention to braids β for which β̂ is a knot, the Dehornoy ordering is related to
knot genus, which we denote by g(K).

Theorem 7.41. [53] Suppose that K = β̂ is a knot in S3, β ∈ Bn, and that k
is the smallest integer such that ∆−2k−2

n <D β <D ∆2k+2
n . Then k < g(K) + 1.





CHAPTER 8

Groups of Homeomorphisms

8.1. Homeomorphisms of a space

If X is any topological space and Y a closed subset of X, we consider the group
Homeo(X,Y ) of all homeomorphisms of X onto itself which leave Y pointwise fixed.
The group operation is composition of functions.

In this chapter we will be considering manifolds of arbitrary dimension, espe-
cially concentrating on the n-dimensional cube. It is based on the paper [15].

We’ll first look at the case n = 1. We saw in Example 1.11 that the group
Homeo+(R) is left-orderable. The space Homeo(I, ∂I) of homeomorphisms of the
interval I = [−1, 1] which are fixed on ±1 may be identified with Homeo+(R), so
we conclude.

Proposition 8.1. Homeo(I, ∂I) is left-orderable. Moreover, every countable
left-orderable group is isomorphic with some subgroup of Homeo(I, ∂I).

Corollary 8.2. Homeo(I, ∂I) is not bi-orderable or locally indicable.

This follows since there are plenty of countable left-orderable groups which are
not locally indicable as observed by [5], but they all embed in Homeo(I, ∂I) by
Theorem 2.23. In fact, by Theorem 7.8 the braid groups on 5 or more strands
provide such examples.

We may consider a natural subgroup of Homeo(I, ∂I), consisting of all functions
which are piecewise-linear, meaning that there is a finite subdivision of I for which
the function is (affine) linear on each subinterval. The subdivision may vary with
the function, but the set PL(I, ∂I) of all piecewise-linear functions is easily seen
to be a subgroup of Homeo(I, ∂I), that is, closed under composition and taking
inverses.

Proposition 8.3. PL(I, ∂I) is bi-orderable.

In fact we can define the positive cone for a bi-ordering of by declaring that a
function f ∈ PL(I, ∂I) is positive if and only if its (right-sided) derivative satisfies
f ′(x0) > 1 where x0 is the maximum such that the restriction of f to the interval
[−1, x0] is the identity. In other words, a PL function is positive if the first point
at which its graph departs from the diagonal in I × I it goes above the diagonal.

Problem 8.4. Verify that the set defined above is actually a positive cone of
a bi-ordering of Homeo(I, ∂I); that is, the composite of two positive functions is
positive, any conjugate of a positive function is positive and for any nonidentity
function, either it or its inverse is positive.

It follows that PL(I, ∂I) is also locally indicable. We will see that this gener-
alizes to higher dimensions, but that bi-orderability does not.
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8.2. PL homeomorphisms of the cube

If n is a positive integer, the n-dimensional cube In has boundary ∂In which
is homeomorphic with the (n − 1)-dimensional sphere Sn. A homeomorphism f :
In → In will be called piecewise-linear (PL) if there is a finite triangulation of In

such that f is (affine) linear on each simplex of the triangulation.

Example 8.5. Figure 1 depicts a PL homeomorphism of a square, which pre-
serves the foliation by concentric squares, and (for suitable choices of edge lengths)
whose 12th power is a Dehn twist, that is a homeomorphism fixed on the inner
square as well as the boundary of I2 which “twists” the annulus in between. Note
that is is also area-preserving.

−−−−−→

Figure 1. A 12th root of a PL Dehn twist

Theorem 8.6. For any n ≥ 1, the group PL(In, ∂In) is locally indicable, and
therefore left-orderable.

Before proving this in the next section, we observe the following.

Theorem 8.7. For n ≥ 2, the group PL(In, ∂In) is not bi-orderable.

We’ll prove this for the case n = 2. It will then follow for higher dimensions
from Proposition 8.8 below. Consider two functions f, g ∈ PL(I2, ∂I2) defined as
follows. Let h : I2 → I2 denote the function illustrated in Figure 1. Recall that
h12 is a Dehn twist, which is the identity on the inner square, as well as on ∂I2.
Define f to be the function h6, so that f rotates the inner square by 180 degrees.
Referring to Figure 2, define g to be the identity outside the little squares, which
are strictly inside the inner square rotated by f . On the little square on the left,
let g act as h, suitably scaled, and on the little square to the right let g act as h−1.
Noting that f interchanges the little squares, and that h commutes with 180 degree
rotation, one checks that f−1gf = g−1.

Such an equation cannot hold (for g not the identity) in a bi-ordered group, as
it would imply the contradiction that g is greater than the identity if and only if
g−1 is greater than the identity (this is just as in the Klein bottle group).

Proposition 8.8. For each n ≥ 1 the group Homeo(In, ∂In) is isomorphic with
a subgroup of Homeo(In+1, ∂In+1) and PL(In, ∂In) is isomorphic with a subgroup
of PL(In+1, ∂In+1).
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h h−1

Id

Figure 2. Building the function g ∈ PL(I2, ∂I2)

The isomorphism may be constructed as follows. Consider the cube In+1 as
a subset of Rn+1 with coordinates (x1, . . . , xn+1) and let In be the subset of In+1

with xn+1 = 0. The suspension ΣIn can be embedded in In+1 as the union of
all straight line segments running from In to the points (0, . . . , 0,±1). Then a
mapping f : In → In fixed on the boundary suspends naturally to a mapping
Σf : ΣIn → ΣIn fixed on the boundary. Extend Σf by the identity to obtain
the image of f in Homeo(In+1, ∂In+1). This is easily checked to be an injective
homomorphism, and it is clear that if f is PL, then so is its image.

We note that all the self-homeomorphisms in this argument are actually area-
preserving. Moreover the suspension construction of Proposition 8.8 takes area-
preserving maps to area-preserving maps. So we can refine Theorem 8.6 to apply
to the subgroup of PL(In, ∂In) consisting of area-preserving PL homeomorphisms,
which we denote by PLω(In, ∂In).

Theorem 8.9. For n ≥ 2, the group PLω(In, ∂In) is not bi-orderable.

8.3. Proof of Theorem 8.6

Consider an arbitrary finitely generated nontrivial subgroup H = 〈h1, . . . , hk〉
of PL(In, ∂In). We will be done if we can find a nontrivial homomorphism from H
to some locally indicable group, for then its image will map nontrivially to Z.

Now the fixed point set fix(hi) of each generator of H is a simplicial complex
in In which contains ∂In. The global fixed point set fix(H) is just the intersection
of these sets, and so it is also a closed simplicial complex containing ∂In. Since
H is nontrivial, there is a point in the complement of fix(H). It is possible to
connect this point to ∂In by a simplicial curve that avoids the (n− 2)-skeleton of
the triangulation of fix(H). Moving along this arc from ∂In, one can find a point
p in fix(H) and a neighborhood of p for which every element of H fixes an (n− 1)-
dimensional hyperplane π in that neighborhood, every element of H maps one side
of π linearly to the same side of π and therefore preserves orientation.

Let G be the group of germs of PL homeomorphisms in H at p, so that maps
are identified if they agree on some neighborhood of p. There is an obvious ho-
momorphism H → G which is nontrivial. The group G may be identified as a
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subgroup of GL(n,R) consisting of linear maps which fix an (n − 1) dimensional
subspace π of Rn and preserve orientation. Lemma 8.10 and Problem 8.11 below
imply that G is locally indicable and the proof of Theorem 8.6 is complete.

Lemma 8.10. The subgroup of GL(n,R) consisting of all orientation-preserving
linear maps of Rn which pointwise fix an (n − 1) dimensional subspace π of Rn is
isomorphic to Rn−1 oR∗. The group operation on Rn−1 is vector addition and R∗
denotes the multiplicative group of positive real numbers.

To see this note that the subgroup of GL(n,R) fixing π can be conjugated into
the set of matrices of the form ( Id V

0 r ) where Id is the identity in GL(n − 1,R),
where V is an arbitrary column vector and where r is a nonzero real number, which
is positive in the orientation-preserving case.

Problem 8.11. Conclude the proof of the lemma by showing that matrix mul-
tiplication defines a semidirect product structure on the set of pairs (V, r). Use
Problem 4.5 to argue that Rn−1 oR∗ is locally indicable because each of its factors
is locally indicable.

8.4. Generalizations

Theorem 8.6 may be generalized in several directions, which we will discuss
without proof, referring the reader to [15] for details. Our proof in the last section
did not actually use the fact that the space was a cube, and applies more generally
to piecewise-linear manifolds. A PL n-manifold is defined as a space covered with
charts homeomorphic with Rn in such a way that the transition functions between
charts may be chosen to be piecewise-linear. One can then define PL homeomor-
phisms in a natural way. A smooth n-manifold is defined similarly, with transition
functions that are infinitely differentiable. This setting enables the definition of
differentiable maps on smooth manifolds.

Theorem 8.12. Let M be an n dimensional connected PL manifold, and let
K be a nonempty closed PL (n − 1)-dimensional submanifold. Then the group
PL+(M,K) of orientation-preserving PL homeomorphisms of M , fixed on K, is
locally indicable and therefore left-orderable.

If M is a smooth manifold and K a smooth submanifold, Diff1
+(M,K) denotes

the group of orientation-preserving self-homeomorphisms of M which are fixed on
K and which are continuously (once) differentiable.

Theorem 8.13. Let M be an n dimensional connected smooth manifold, and let
K be a nonempty n−1 dimensional closed submanifold. Then the group Diff1

+(M,K)
is locally indicable and therefore left-orderable.

Since each group Diffp+(M,K) of p-times continuously differentiable homeomor-

phisms (p = 2, 3, . . . ,∞) is a subgroup of Diff1
+(M,K), these groups are also locally

indicable.

8.5. Homeomorphisms of the cube

It is natural to ask if the results on PL and differentiable homeomorphisms
of the cube (and other manifolds) apply to the more general setting of homeo-
morphisms which are just continuous (with continuous inverses). Even for the
2-dimensional cube, the question is open at the time of this writing.
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Question 8.14. Is Homeo(I2, ∂I2) left-orderable?

However, it is a classical result that this group is torsion-free, and that also
generalizes to higher dimensions.

Theorem 8.15. The group Homeo(In, ∂In) is torsion-free for all n.

We’ll just sketch the proof, again referring to [15] for details. Suppose f ∈
Homeo(In, ∂In) has finite order, that is f 6= Id but fp = Id for some p. By
possibly passing to a power of f we can assume p is prime. Then P. A. Smith
theory implies that the fixed point set fix〈f〉 of the cyclic subgroup generated by f
has the mod p homology of a point. However ∂In is a subset of fix〈f〉 and represents
a nontrivial (n − 1)-dimensional homology cycle. Since it must bound, mod p, we
conclude that fix〈f〉 is all of In, contradicting f 6= Id.





CHAPTER 9

Conradian left-orderings and local indicability

In this chapter we will introduce a special type of left-ordering, called a Conra-
dian left-ordering. Conradian left-orderability is a more restrictive condition than
left-orderability, in the sense that there are left-orderable groups that are not Con-
radian left-orderable, but weaker than bi-orderability since there are Conradian
left-orderable groups that are not bi-orderable. Our goal is to show that Conradian
left-orderability is equivalent to local indicability. Although this has appeared in
the literature, our approach seems new.

To begin, we recall the notion of a convex jump, which was introduced in
Chapter 2. Having fixed a left-ordering of a group, a convex jump is a pair of distinct
convex subgroups (C,D) such that C ⊂ D and there are no convex subgroups
strictly between them.

Problem 9.1. Recall the Klein bottle group K = 〈x, y : xyx−1 = y−1〉 from
Problem 1.10. Show that the subgroup 〈y〉 is convex in every left-ordering of K.
(Hint: Every element of K can be written in the form xmyn for some m,n ∈ Z, by
using the relations y−1x = xy and yx = xy−1 to shuffle all the occurences of x to
one side).

Example 9.2. By Problems 9.1 and 2.13, every left-ordering of K is lexico-
graphically defined from the short exact sequence

1→ 〈y〉 → K → K/〈y〉 → 1.

Recall from Problem 1.10 that K/〈y〉 is infinite cyclic, so K admits only four left-
orderings since the kernel and the quotient each admit only two. In particular,
in every left-ordering of K the convex subgroups are {1} ⊂ 〈y〉 ⊂ K. Therefore
({1}, 〈y〉) and (〈y〉,K) are the only convex jumps in a left-ordering of K.

A Conradian left-ordering will be a kind of ordering built from Archimedean
orderings of abelian quotients, similar to the way that the orderings of the Klein
bottle group are built from the abelian subgroup 〈y〉 and the abelian quotient K/〈y〉
in the previous example. To formalize this idea, we need the notion of a Conradian
jump. Suppose that G is a left-ordered group with ordering <, that (C,D) is a
convex jump such that C is normal in D, and the natural ordering of D/C is
Archimedean. In this case the convex jump (C,D) is called a Conradian jump. By
Theorem 2.6 there exists an order-preserving embedding

τ : D/C → (R,+),

we will refer to τ as the Conrad homomorphism associated to the Conradian jump
(C,D). First introduced by Conrad in [23], a Conradian left-ordering is a left-
ordering all of whose convex jumps are Conradian.
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Example 9.3. By Example 9.2, every left-ordering of the Klein bottle group
K = 〈x, y : xyx−1 = y−1〉 has convex subgroups {1}, 〈y〉, and G. Since 〈y〉 and
G/〈y〉 are infinite cyclic groups, their orderings are always Archimedean, and so
every convex jump of a left-ordering of the Klein bottle group is a Conradian jump.
Therefore every left-ordering of the Klein bottle group is Conradian.

Example 9.4. If G is a finitely generated bi-ordered group, then the largest
proper convex subgroup C ⊂ G gives rise to an abelian quotient G → G/C ⊂
(R,+). By the arguments in Section 2.3, the pair (C,G) is a Conradian jump and
the quotient map is the Conrad homomorphism.

9.1. The defining property of a Conradian ordering

The Conradian left-orderings of a group G can also be characterized by asking
that a certain inequality holds for all pairs of positive elements in G. This rechar-
acterization allows for a sort of “local definition” of Conradian left-orderings, so
that one can easily deduce that subgroups of Conradian left-ordered groups are
Conradian left-ordered, etc.

Theorem 9.5. [23] For a left-ordering < of a group G, the following are equiv-
alent:

(1) < is a Conradian left-ordering.
(2) For every pair of positive elements g, h ∈ G there exists n > 0 such that

g < hgn.

Proof. Suppose that < is a Conradian left-ordering of G, and let g, h > 1 be
given. Define two subgroups

Cg =
⋃

C convex
g /∈ C

C and Dg =
⋂

D convex
g ∈ D

D,

both Cg and Dg are convex by Problem 2.17. It follows from their definitions
that (Cg, Dg) is a convex jump. Similarly, we can define the convex jump (Ch, Dh)
corresponding to h. Since < is a Conradian left-ordering of G, for each of the convex
jumps (Cg, Dg) and (Ch, Dh), there are corresponding Conrad homomorphisms

τg : Dg/Cg → (R,+) and τh : Dh/Ch → (R,+).

Problem 9.6. Show that at least one of the homomorphisms τg, τh satisfies

τ(g−1hgn) > 0

for n > 0 sufficiently large. Since Conrad homomorphisms are order-preserving,
conclude (1) implies (2). (Hint: Recall from 2.9 that convex subgroups are linearly
ordered by inclusion. Therefore either Cg ⊂ Dg ⊆ Ch ⊂ Dh, or Ch ⊂ Dh ⊆ Cg ⊂
Dg, or Cg = Ch and Dg = Dh. In each of the first two cases argue that the Conrad
homomorphism of the larger convex jump satisfies τ(g−1hgn) > 0, in the third case
either Conrad homomorphism will do.)

Conversely, suppose that < is an ordering of G that satisfies (2). To begin, we
have a lemma:

Lemma 9.7. Suppose that a nontrivial group G admits a left-ordering < that
satisfies property (2), and that (C,D) is a convex jump. Then for every pair of
positive elements g, h in D \ C, there exists n > 0 such that gn > h. In particular,



9.1. THE DEFINING PROPERTY OF A CONRADIAN ORDERING 103

if (G,<) satisfies (2) and contains no proper, nontrivial convex subgroups, then <
is Archimedean.

Proof. The following proof is due to Herman Goulet-Ouellet. Fix a positive
element g ∈ D \ C and set S0 = {x ∈ G | there exists n > 0 such that x < gn}.
By property (2), if y ∈ G is positive then for every k > 0 there exists nk > 0 such
that gk < y(gk)nk . Now suppose x ∈ S0, and choose k > 0 such that x < gk. Left-
multiplying by y−1 gives y−1x < y−1gk < (gk)nk , which shows that y−1x ∈ S0. We
conclude that S0 ⊂ yS0, and this holds for every positive y ∈ G. We use this fact
repeatedly in what follows.

Define X = {S ⊂ G | x ∈ S and y < x⇒ y ∈ S}, the set X is linearly ordered
by inclusion. Moreover for f ∈ G and S ⊂ X the rule fS = {fx | x ∈ S} defines
an effective, order-preserving action of G on X . Denote the stabilizer of S0 ∈ X by
GS0 .

First, we show that the stabilizer GS0 is convex in our given left-ordering. To
this end, suppose x < y < z, with x, z ∈ G0. Then x < y implies 1 < x−1y, and so
S0 ⊂ (x−1y)S0, from the first paragraph. But then xS0 ⊂ yS0, and since xS0 = S0

this gives S0 ⊂ yS0. A similar argument shows that yS0 ⊂ zS0 = S0, so that
yS0 = S0.

Now note that g ∈ GS0 , which we will use to show that C ⊂ GS0 . Given c ∈ C,
since C is convex and g > 1 with g /∈ C, we have c±1 < g. Therefore 1 < c±1g,
which gives S0 ⊂ c±1gS0, or equivalently, c±1S0 ⊂ gS0 = S0. On the other hand,
if c > 1 then S0 ⊂ cS0 and we conclude cS0 = S0; if c < 1 then c−1 > 1 and
S0 ⊂ c−1S0 gives c−1S0 = S0. In either case, c ∈ GS0

and we conclude C ⊂ GS0
.

Finally we note that GS0
⊂ D, and since (C,D) is a convex jump this forces

D = GS0 . But then every positive h ∈ D is in GS0 , in particular since hS0 = S0

and 1 ∈ S0 we have h ∈ S0. This means there exists n > 0 such that h < gn, as
required.

The next lemma will allow us to finish the proof of Theorem 9.5.

Lemma 9.8. Suppose that G is a left-orderable group with ordering < that
satisfies (2). If (C,D) is a convex jump, then C is normal in D.

Proof. Choose h ∈ D \ C with h > 1. For an arbitrary g ∈ C, we wish to
show that hgh−1 ∈ C. Supposing that hgh−1 /∈ C and hgh−1 > 1, by Lemma 9.7
there exists n > 0 such that hgnh−1 > h. But then left multiplying by g−nh−1,
the inequality hgnh−1 > h gives h−1 > g−n. Recalling that h > 1, we have
1 > h−1 > g−n, and hence h−1 ∈ C by convexity of C. This is a contradiction.

On the other hand if hgh−1 /∈ C and hgh−1 < 1, by a similar calculation we
arrive at 1 > h−1 > gn so that again h−1 ∈ C, a contradiction. We conclude that
hCh−1 ⊂ C for all h > 1.

Now we show C ⊂ hCh−1, by showing h−1Ch ⊂ C. First we consider an
arbitrary element c ∈ C and prove a short lemma. Note that 1 < c−1h, so by
Lemma 9.7, there exists n such that h < (c−1h)n. Therefore 1 < h−1(c−1h)n,
and 1 < h−1(c−1h)nh since it is a product of the positive elements h−1(c−1h)n

and h. Now h−1(c−1h)h is positive since its n-th power is positive, so we take
h−1(c−1h)h > 1 and left-multiply by h−1ch to get h−1ch < h. Since c ∈ C was
arbitrary, we have as a lemma that h−1ch < h for all c ∈ C.
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Now let g ∈ C and suppose h−1gh > 1, the case of h−1gh < 1 is similar. Since
gk ∈ C for all k > 0, by the previous paragraph h−1gkh < h for all k > 0. But
1 < h−1gkh = (h−1gh)k < h for all k > 0 forces h−1gh ∈ C, by Lemma 9.7. We
conclude that h−1Ch ⊂ C.

Thus hCh−1 = C for all positive h ∈ D \ C, it follows that C is normal.

Now let (C,D) be a convex jump relative to our ordering < of G that satisfies
(2), we check that the jump is Conradian. By Lemma 9.8 C is normal in D, and
since the ordering of G satisfies (2), the natural ordering of the quotient D/C also
satisfies (2) because the quotient map D → D/C is order preserving. Moreover,
since (C,D) is a convex jump the quotient D/C (under the natural ordering) admits
no proper convex subgroups. Thus we are in a position to apply Lemma 9.7 to the
quotient ordering of D/C, which tells us that the natural ordering of the quotient
is Archimedean. Thus, (C,D) is a Conradian jump, and < is a Conradian left-
ordering of G.

Theorem 9.5 also shows that every bi-ordering is Conradian, because in a bi-
ordering g < hgn is true for every positive pair of elements g, h ∈ G by taking
n = 1. We can also conclude that any subgroup H of a Conradian ordered group G
admits a Conradian ordering, since property (2) is obviously inherited by subgroups,
whereas this is not so obviously the case with property (1).

Problem 9.9. Let G be a left-orderable group, and H a finite index subgroup.
Show that any left-ordering of G which restricts to a bi-ordering of H is Conradian.
In particular, if |G : H| = n, then for all pairs of positive elements g, h ∈ G we
have g < hgn.

As an application of this fact, it follows that no bi-ordering of the pure braid
group Pn can be extended to a left-ordering of the braid group Bn for n ≥ 5. What
about for n = 3, 4?

Problem 9.10. Show that the Dehornoy ordering of Bn is not Conradian for
n ≥ 3 by finding positive braids β1 and β2 that satisfy β1 >D β2β

2
1 .

We see that B3 and B4 are examples of groups which admit non-Conradian left
orderings, but also, because of Corollary 9.21 below, they have Conradian orderings
too, as they are locally indicable, according to Theorems 7.6 and 7.7.

9.2. Characterizations of Conradian left-orderability

It is a remarkable fact that n = 2 suffices in Theorem 9.5 [76]. This can be
deduced from Problem 9.6, where one verifies that τ(g−1hgn) > 1 for sufficiently
large n. Since τ is order-preserving and its image lies in R, both τ(h) and τ(g)
are non-negative real numbers so n = 2 is all we need. One can also argue directly
from property (2) in Theorem 9.5 that g < hg2 for all g, h > 1.

Proposition 9.11. [76, Proposition 3.7] Suppose that < is a Conradian left-
ordering of a group G. If g, h > 1 then g < hg2.

Proof. For contradiction, suppose that hg2 < g. Then g−1hg2 = (g−1hg)g <
1, so g−1hg must be negative since g is positive. Thus we also have g−1hg < 1,



9.2. CHARACTERIZATIONS OF CONRADIAN LEFT-ORDERABILITY 105

or hg < g. Now consider the positive elements h and x = hg. For all n ≥ 0 we
calculate

hxn = h(hg)n−2(hg)(hg)

< h(hg)n−2(hg)g

= h(hg)n−2(hg2)

< h(hg)n−2g

· · ·
< hg = x

Thus the positive elements h, x do not satisfy the Conradian condition, a contra-
diction.

Using n = 2, one can recharacterize Conradian left-orderability in way similar
to the recharacterization of left-orderability given in Theorem 1.48. To begin with,
suppose that G is generated by a set S ⊂ G, and let Gk denote all the elements of
G that can be expressed as a word of length k or less in these generators. Define
a Conradian proper k-partition of G to be a proper k-partition Q ⊂ Gk that also
satisfies: if g, h ∈ Q and g−1hg2 ∈ Gk, then g−1hg2 ∈ Q.

With the idea of a Conradian proper k-partition in place of a proper k-partition,
one can prove Conradian versions of most of the theorems in Section 1.6. With the
exception of the Burns-Hale theorem, very few modifications are required.

Theorem 9.12. If G is generated by S ⊂ G, then G is Conradian left-orderable
if and only if there is a Conradian proper k-partition of Gk for all k ≥ 1.

Problem 9.13. Let Ck denote all the subsets of G whose intersection with Gk
is a Conradian proper k-partition. Prove that Ck is a closed subset of the power set
P(G), and then prove Theorem 9.12 by following the proof of Theorem 1.43.

It is in Problem 9.13 that n = 2 is really essential. If one tries to use the
‘standard’ definition of a Conradian ordering, namely for every pair of positive
elements g, h ∈ G there exists n > 0 such that g < hgn, a problem arises when
trying to show that Ck is closed.

Problem 9.14. Recall the topology on the power set P(G) introduced in Sec-
tion 1.5.1, whose subbasis consists of sets Ux and U cx. Show that a set S in P(G)
that violates the condition:

for all pairs of positive elements g, h ∈ S there exists n > 0 such that g−1hgn ∈ S

naturally belongs to an infinite intersection of subbasic open sets, by rewording the
negation of the condition above in terms of the sets Ux and U cx. As an infinite
intersection of subbasic open sets need not be open, this does not provide an open
neighbourhood of S.

In the case of Conradian left-orderings, as in the case of left-orderings, it is not
necessary that the group under discussion be finitely generated.

Theorem 9.15. A group G is Conradian left-orderable if and only if each of
its finitely generated subgroups is Conradian left-orderable.
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The proof of this theorem is more or less identical to the proof of Theorem
1.44, so we omit it.

For a subset X ⊂ G, let C(X) denote the smallest subsemigroup of G satisfying
X ⊂ C(X) and for all x, y ∈ C(X), x−1yx2 ∈ C(X). The subsemigroups C(X)
of a group G will replace the the standard subsemigroups S(X) of G in Theorems
1.48 and 1.50, which we prove now in the Conradian case.

Theorem 9.16. [76] A group G admits a Conradian left-ordering if and only if
for every finite subset {x1, . . . , xn} of G which does not contain the identity, there
exist εi = ±1 such that 1 6∈ C({xε11 , . . . , xεnn }).

Proof. For one direction, suppose that G admits a Conradian left-ordering
with positive cone P . Given a finite subset {x1, . . . , xn} of G that does not con-
tain the identity, choose exponents εi = ±1 so that xεii ∈ P for all i. Then P
is a subsemigroup of G containing {xε11 , . . . , xεnn } but not 1, and for all x, y ∈ P ,
x−1yx2 ∈ P . Since C({xε11 , . . . , xεnn }) is the smallest semigroup with these proper-
ties, we conclude C({xε11 , . . . , xεnn }) ⊂ P , so that 1 is not in C({xε11 , . . . , xεnn }).

For the other direction, consider the finite subset Gk\{1} of G, which we’ll enu-
merate as {x1, . . . , xn}. Choose exponents εi = ±1 so that 1 /∈ C({xε11 , . . . , xεnn }).
Then C({xε11 , . . . , xεnn }) ∩ Gk is a Conradian proper k-partition. It follows that G
is Conradian left-orderable, by Theorem 9.12.

Theorem 9.17. (Burns-Hale for Conradian left-orderable groups, [76]) A group
G admits a Conradian left-ordering if and only if for every finitely generated sub-
group H 6= {1} of G, there exists a Conradian-left-orderable group K and a non-
trivial homomorphism H → K.

Proof. One direction is clear, since every subgroup of a Conradian left-ordered
group is Conradian left-ordered.

For the other direction, we need to prepare a technical lemma in order to apply
Theorem 9.16.

Lemma 9.18. Let X,Y denote subsets of G that do not contain the identity.
If h : 〈X,Y 〉 → K is a homomorphism onto a Conradian left-ordered group K
satisfying h(x) > 1 for all x ∈ X and h(y) = 1 for all y ∈ Y , then for all g ∈
C(X ∪ Y ) we have h(g) ≥ 1, with h(g) = 1 if and only if g ∈ C(Y ).

Proof. For any subset W of G, define SC(W ) to be the subsemigroup gener-
ated by elements of W , and elements of the form v−1uv2 with u, v ∈ W . Now set
C0(W ) = SC(W ), and for i > 0 define Ci = SC(Ci−1(W )). The union

⋃∞
i=0 Ci(W )

is a subsemigroup of G containing W , and for all u, v ∈
⋃∞
i=1 Ci(W ), the element

v−1uv2 is in the union as well. Thus

C(W ) ⊂
∞⋃
i=1

Ci(W )

since C(W ) is the smallest subsemigroup of G with these properties, and in fact
C(W ) =

⋃∞
i=1 Ci(W ). We now proceed to prove the lemma by induction.

As a base case, let g ∈ SC(X ∪ Y ) = C0(X ∪ Y ) be given. By definition of
SC(X ∪ Y ), g is a word in positive powers of the generating set W where

W = X ∪ Y ∪ {v−1uv2 : u, v ∈ X ∪ Y }.
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Since h(w) ≥ 1 for all w ∈ W , it follows that h(g) ≥ 1. Assuming h(g) = 1, then
g cannot contain any occurences of w ∈ X, or w = v−1uv2 with either u ∈ X or
v ∈ X, for in either of these cases h(w) > 1. Thus g contains only occurences of
w ∈ Y , and w = v−1uv2 with u, v ∈ Y . Therefore g ∈ C(Y ).

Now assume that for all w ∈ Ci(X ∪ Y ), h(w) ≥ 1 with h(w) = 1 if and only
if w ∈ Ci(Y ). Let g ∈ Ci+1(X ∪ Y ) be given, g is a word in terms w ∈ Ci(X ∪ Y )
and w = v−1uv2 with u, v ∈ Ci(X ∪ Y ). In both cases, h(w) ≥ 1, so h(g) ≥ 1.

Assuming h(g) = 1, we consider the two types of terms w appearing in the
expression for g. First, if w ∈ Ci(X ∪ Y ) then h(w) = 1 implies w ∈ Ci(Y ) ⊂
Ci+1(Y ) by the induction assumption. Second, if w = v−1uv2 with u, v ∈ Ci(X∪Y )
then h(w) = 1 implies h(u) = h(v) = 1 so that u, v ∈ Ci(Y ). Thus w = v−1uv2 ∈
Ci+1(Y ), and it follows that g ∈ Ci+1(Y ). The lemma now follows by induction.

Now we can complete the proof of Theorem 9.17 by showing that the subgroup
condition implies that G is Conradian left-orderable, and using Theorem 9.16. We
proceed by induction on n, as in the proof of the Burns-Hale theorem. The claim to
prove is that for every finite subset {x1, . . . , xn} of G, there are exponents εi = ±1
such that 1 /∈ C({x1, . . . , xn}).

If n = 1 then C({x1}) is equal to S({x1}), and this semigroup only contains
the identity if x1 has finite order. This is not possible, because by assumption
there is a nontrivial homomorphism from the cyclic group 〈x1〉 onto a Conradian
left-orderable group.

Now suppose that the claim holds for all finite sets having fewer than n elements
and which do not contain the identity, and consider a set {x1, . . . , xn} of n non-
identity elements in G. There exists a nontrivial homomorphism

h : 〈x1, . . . , xn〉 → K

where (K,≺) is a Conradian left-orderable group. Index the elements {x1, . . . , xn}
so that

h(xi)

{
6= 1 if i = 1, . . . , r,

= 1 if r < i ≤ n.
and choose εi = ±1 so that 1 ≺ h(xεii ) for i = 1, . . . , r. By the induction hypothesis,
we can choose εi = ±1 for i = r + 1, . . . , n so that 1 /∈ C({xεr+1

r+1 , . . . , x
εn
n }). Now

choose x ∈ C({xε11 , . . . , xεnn }), by Lemma 9.18 either 1 ≺ h(x) or h(x) = 1 and
x ∈ C({xεr+1

r+1 , . . . , x
εn
n }). In either case x 6= 1, so the claim follows by induction.

Using the Conradian version of the Burns-Hale theorem, we can prove a deep
theorem originally due to Brodskii [11], with later proofs appearing in [86] and [75].
First we observe that every nontrivial finitely generated Conradian left-orderable
group has at least one torsion free abelian quotient.

Proposition 9.19. If G is a nontrivial finitely generated Conradian left-ordered
group, then there exists a proper normal convex subgroup C ⊂ G such that G/C is
a finitely generated torsion free abelian group.

Proof. Suppose that G has the Conradian left-ordering < and is generated by
x1, . . . , xn. We may suppose (by replacing a generator with its inverse if necessary)
that xi > 1 for all i.



108 9. CONRADIAN LEFT-ORDERINGS AND LOCAL INDICABILITY

Suppose without loss of generality that xn is the largest generator. Then the
subgroup

C =
⋃

D convex
xn /∈ D

D

is convex, and in fact (C,G) is a convex jump: any convex subgroup strictly larger
than C would have to contain xn, and thus all of the generators of G by convexity.
Since < is a Conradian left-ordering the jump (C,G) is Conradian, so the quotient
G/C admits an Archimedean ordering and there is an embedding

G/C → (R,+).

Hence G/C is torsion free and abelian.

Problem 9.20. Let G be a finitely generated Conradian left-orderable group,
and suppose that the abelianization G/[G,G] is infinite cyclic. Show that [G,G] is
convex in every Conradian left-ordering of G.

Recall that a group G is said to be locally indicable if every finitely generated
nontrivial subgroup H of G admits a surjection H → Z.

Corollary 9.21. [11, 86, 75] A group G admits a Conradian left-ordering
if and only if G is locally indicable.

Proof. Suppose H is a finitely generated subgroup of the Conradian ordered
group G. Since H is also Conradian, by Proposition 9.19 there exists a map of H
onto a nontrivial finitely generated torsion-free abelian group and hence onto Z. On
the other hand, if there exists a surjective map H → Z for every finitely generated
subgroup H of G, then G admits a Conradian left-ordering by Theorem 9.17.

Note that the obvious generalization of the Burns-Hale theorem to bi-orderable
groups is not true: Locally indicable groups already satisfy the property that every
finitely generated subgroup maps onto a bi-orderable group, yet not all locally
indicable groups are bi-orderable.



CHAPTER 10

Spaces of orderings

The space LO(G) of all left-orderings of a group G has already been introduced
in Section 1.5.2. Recall that by identifying an ordering with its positive cone, we
can regard LO(G) as a subset of the power set P(G) of the set of elements of the
group. Since P(G) can be naturally identified with the product

∏
g∈G{0, 1}, we

can equip it with the Tychonoff topology. We saw that the Tychonoff topology has
as a subbasis the sets

Vg = {A ⊂ G : g ∈ A} and V cg = {A ⊂ G : g /∈ A}
and so as a subspace of P(G), the topology on LO(G) has as a subbasis all sets of
the form

Ug = Vg ∩ LO(G) = {P ∈ LO(G) : g ∈ P}
U cg = V cg ∩ LO(G) = {P ∈ LO(G) : g−1 ∈ P}

This natural choice of topology makes LO(G) a closed subset, and therefore it is a
compact space. It is also totally disconnected since P(G) is totally disconnected.
Moreover, if G is countably infinite then LO(G) is metrizable, and so by a theorem
of Brouwer is homeomorphic with the Cantor set if and only if it contains no isolated
points. A metric on LO(G) in case G is a countable group is constructed in Problem
1.41.

In this context, an isolated point in LO(G) corresponds to a left-ordering that
is the unique left-ordering satisfying some finite string of inequalities. Equivalently,
one can left-multiply the inequalities as necessary and see that an isolated ordering
is the unique left-ordering of G in which some finite set of elements {g1, . . . , gn} are
all positive. Thus an isolated ordering is one whose positive cone P satisfies

{P} =

n⋂
i=1

Ugi

The existence or nonexistence of such positive cones is a central question when
trying to determine the homeomorphism type of LO(G).

10.1. The natural actions on LO(G)

There is a natural “conjugation” action of the group G upon LO(G) which we
write as a right action. Given an ordering < of G, the right action of g on < will be
written as <g, and is defined according to x <g y if and only if xg−1 < yg−1. For
left-orderings the latter inequality is equivalent to gxg−1 < gyg−1, hence the name
conjugation. The subset of LO(G) which is fixed under all conjugations is clearly
the set of all bi-invariant orderings, which we denote O(G).

Problem 10.1. Check that conjugation is really a right action, that is (<g)h is
the same as <(gh). If P is the positive cone of <, show that the positive cone for <g

109
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Figure 1. The action of the generator y is trivial, while the gen-
erator x acts by swapping pairs of left-orderings.

is g−1Pg. Verify that, for any fixed g ∈ G, the mapping <→<g is a homeomorphism
of LO(G).

In some cases, the structure of LO(G) is straightforward, as is the action. We
already saw in Example 9.2 that the group K = 〈x, y : xyx−1 = y−1〉 has only four
left-orderings, and all of them arise from the short exact sequence

1→ 〈y〉 → K → K/〈y〉 → 1

In this case LO(K) is a discrete space with four points, and the action of K on
LO(K) is illustrated in Figure 10.1. Note that every orbit of the action contains
more than one point, because K is not bi-orderable.

Problem 10.2. Show that O(G) is closed in LO(G) by two different arguments.
For the first, observe that being the positive cone of a 2-sided ordering is a closed
condition. Alternatively, argue more generally that if a group G acts on a topological
space X by homeomorphisms, the fixed point set of the action of any g in G is closed
in X, and the same is true of the global fixed point set (points of X fixed by all
g ∈ G.)

Thus we see that O(G) is also a compact totally disconnected space.
Conjugation is a special case of an automorphism of G, namely an “inner”

automorphism. So, more generally we can say that any automorphism φ of G gives
rise to a mapping <−→<φ where the definition of <φ is x <φ y ⇐⇒ φ(x) < φ(y).

Problem 10.3. Check that the mapping <→<φ defines a homeomorphism of
LO(G). If ψ is a second automorphism, the relation <(φψ) is the same as (<φ)ψ.

If P is the positive cone of <, then the positive cone of <φ is φ−1(P ). (Here φ−1

denotes the inverse automorphism, and is not to be confused with, for example,
P−1, denoting inversion in the group G.)

Thus we have a homomorphism of groups

Aut(G) −→ Homeo(LO(G))

where Aut(G), of course, is the automorphism group of G and Homeo(LO(G)) is
the group of homeomorphisms of the space LO(G). The group Inn(G) of inner
automorphisms is a normal subgroup of Aut(G), and the quotient Aut(G)/Inn(G)
is known as the outer automorphism group Out(G).
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One checks that Aut(G) takes bi-invariant orderings to bi-invariant orderings,
so that Aut(G) also acts on the subspace O(G) by homeomorphisms. Moreover,
since Inn(G) acts trivially on O(G) we have an action of Out(G), in other words a
homomorphism

Out(G) −→ Homeo(O(G)).

Problem 10.4. Verify the details of the above paragraph.

10.2. Orderings of Zn and Sikora’s theorem

Of course for G an abelian group, LO(G) and O(G) coincide. It is easy to see
that the additive integers Z can be given just two bi-orderings. The goal of this
section is to prove a fundamental theorem, due to A. Sikora [101].

Theorem 10.5. For n ≥ 2, the space LO(Zn) = O(Zn) has no isolated points,
and hence it is homeomorphic with the Cantor set.

Proof. Before proving this in general, we invite the reader to prove it in the
simplest case.

Problem 10.6. Prove Theorem 10.5 for the case n = 2 as follows. Considering
Z2 ⊂ R2 in the standard way, observe that, given a bi-ordering of Z2, there is a
unique line L through the origin in R2 such that all points of Z2 in one component
of R2 \L are positive and all those in the other component are negative. On the line
itself, either L∩Z2 = {0} or else all positive points of L∩Z2 lie on one component
of L \ {0}. In either case, show that if g1, . . . , gk are in the positive cone of the
ordering, then L may be perturbed to define another ordering of Z2 in which all the
gi remain positive. (Compare Example 1.7)

Now suppose n ≥ 3 and that g1, . . . , gk are positive elements of some given
ordering of Zn. Consider two cases.

Case 1: The ordering of Zn is Archimedian. Then, by Theorem 2.6 there is an
embedding f : Zn → R which is an order-preserving homomorphism. Considering
Zn ⊂ Rn, since f is a linear map, there is a unique vector v ∈ Rn such that
f(x) = v · x for all x ∈ Zn. Moreover, the hyperplane H perpendicular to v ∈ Rn
must satisfy H ∩ Zn = {0}, for otherwise H ∩ Zn would be a nontrivial convex
subgroup of Zn, contradicting the assumption the ordering is Archimedian. It
follows that we have v · gi > 0 for all i. Consequently, one may perturb v by a
small vector perpendicular to v to obtain v′ and define, via dot product, a different
ordering on Zn in which all the gi remain positive.

Case 2: The ordering on Zn is non-Archimedian. Then we have a nontrivial
proper subgroup K ⊂ Zn which is convex in the ordering. This gives an exact
sequence

1→ K → Zn φ→ H → 1

for which both the kernel K and the cokernel H are finitely-generated free abelian.
Moreover K ∼= Zp and H ∼= Zq and there are orderings <K and <H which lexico-
graphically define the given ordering on Zn as in Problem 1.8. Note that p+ q = n,
both p and q are less than n, and at least one of them is greater than 1. We will
proceed by induction, with Problem 10.6 as the base case. If p > 1, then we may
assume inductively that <K is not isolated. Therefore, there is an ordering ≺K
distinct from <K such that whichever gi lie in K (and therefore satisfy gi >K 0),
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will also satisfy gi �K 0. Then the order of Zn lexicographically defined by ≺K and
<H will be a different ordering of Zn in which all the gi remain positive. On the
other hand if q > 1, we may inductively assume there is an ordering ≺H for which
φ(gi) �H 0 whenever φ(gi) >H 0, and similarly construct a different ordering of Zn
in which all the gi are positive.

Recall that the rank of an Abelian group A is the dimension of A⊗Q as a vector
space over Q. Equivalently, a set {ai}i∈I of elements of A is linearly independent
if for every finite subset J ⊂ I ∑

i∈J
niai = 0, ni ∈ Z

implies ni = 0 for all i ∈ J . The rank of an abelian group A is the cardinality of a
maximal linearly independent subset. We can extend Sikora’s theorem as follows.

Theorem 10.7. If A is any torsion-free abelian group of rank greater than one,
then LO(A) = O(A) has no isolated points.

The proof is left as the following exercises.

Problem 10.8. If A is an abelian group and H ⊂ A is a subgroup, define the
isolator of H in A to be

I(H) = {a ∈ A | ∃k ∈ Z such that ak ∈ H}
Show that I(H) is a subgroup, and that every bi-ordering of H extends uniquely to
a bi-ordering of I(H). Show the quotient A/I(H) is torsion free, and conclude that
every bi-ordering of H extends to a bi-ordering of A.

Problem 10.9. If A is a torsion-free abelian group of rank greater than one,
show that LO(A) has no isolated points by applying Sikora’s theorem to the finitely
generated subgroups of A, and using the result of the previous problem (Hint: If S
is a finite subset of A and 〈S〉 ∼= Z, then I(〈S〉) = A implies that A has rank one).

Problem 10.10. Show that if A is a torsion-free abelian group of rank one,
then LO(A) = O(A) has exactly two elements.

10.3. Examples of groups without isolated orderings

We saw in the previous section that the crux of the analysis of LO(Zn) lay in
constructing new orderings of Zn while keeping a certain set of elements positive.
The conjugation action and the action of Aut(G) on LO(G) both provide ways
of creating new left-orderings, and in this section we’ll see that sometimes these
methods alone are sufficient to make a complete analysis of the structure of LO(G).

Recall from Chapter 7 that the braid groups Bn can be defined by generators
σi together with the braid relations. The definition of Bn can be extended to yield
an “infinite strand braid group” B∞, which is defined in terms of generators and
relations by

B∞ =

〈
σ1, σ2, . . .

σiσj = σjσi if |i− j| > 1
σiσjσi = σjσiσj if |i− j| = 1

〉
Problem 10.11. Use the fact that Bn ⊂ B∞ for all n > 0 to show that B∞ is

left-orderable, but not bi-orderable or Conradian left-orderable.
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It turns out that the conjugation action on B∞ supplies us with enough new
left-orderings to show that LO(B∞) has no isolated points [28, Chapter XIV Propo-
sition 2.10]. Consider a positive cone P ∈ LO(B∞) and suppose that S ⊂ P is a
finite subset. We can choose n so large that the generators σi for i > n all commute
with elements of S. Thus every positive cone σ−1

i Pσi contains S for all i > n.

On the other hand, at least one of the positive cones σ−1
i Pσi for i > n has

to be different than P . If none of them are different, then σ−1
i Pσi = P makes P

into the positive cone of a bi-ordering of the subgroup 〈σn, σn+1, . . .〉 ⊂ B∞. But
the subgroup 〈σn, σn+1, . . .〉 is just a copy of B∞, so it is not bi-orderable. This
contradiction shows that P can’t be an isolated point in LO(B∞), and we have
proved

Proposition 10.12. Each point in LO(B∞) is a limit point of its conjugates,
and so LO(B∞) is homeomorphic to the Cantor set.

There are also times when the action of Aut(G) is sufficient to determine the
structure of LO(G).

Problem 10.13. Let F∞ denote the free group on infinitely many generators
x1, x2, x3, . . .. Fix a positive cone P ⊂ F∞ and a finite subset S ⊂ P . Construct
an automorphism φ : F∞ → F∞ satisfying φ(S) = S, but φ(P ) 6= P , and conclude
that LO(F∞) is homeomorphic to the Cantor set. Show that the same construction
can be adapted to show that O(F∞) is also a Cantor set.

Both the argument in the case of LO(B∞) and the case of LO(F∞) take ad-
vantage of the fact that there are infinitely many generators of the group. When
the group in question is finitely generated, the problem can become much more
difficult, and indeed, there may be isolated points (as we will see in the case of Bn).

10.4. The space of orderings of a free product

At the time of this writing, there are few general theorems available which
predict when a group does (or does not) admit isolated points in its space of left-
orderings. However, we do have the following remarkable structure theorem due to
Rivas.

Theorem 10.14. [87] Suppose that G and H are nontrivial left-orderable groups,
so that G ∗H is left-orderable. Then LO(G ∗H) has no isolated points.

In full generality, the proof is quite involved. However we can demonstrate
some of the core principles by considering the proof in the case G ∼= H ∼= Z, so that
G ∗H = F2.

Theorem 10.15. The space of left-orderings LO(F2) has no isolated points.

Proof. Suppose that F2 has generators a and b, let P ∈ LO(F2) be a positive
cone. Corresponding to the positive cone P there is a left-ordering < of F2 and
a dynamic realization ρ : F2 → Homeo+(R) such that for all g ∈ F2 we have
ρ(g)(0) > 0 if and only if g > 1 (see Section 2.4). Let Bn(F2) ⊂ F2 denote the
set of elements of F2 that are represented by reduced words of length less than or
equal to n relative to the generating set {a, b}.

Problem 10.16. In order to prove that P ∈ LO(F2) is not isolated, show that
it suffices to construct a representation ρn : F2 → Homeo+(R) for each n > 0 such
that
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(1) For all w ∈ Bn(F2), ρn(w)(0) = ρ(w)(0).
(2) There exists g 6= 1 ∈ F2 such that ρn(g)(0) = 0.

(Hint: For each n, the representations ρ and ρn can be used to construct two distinct
orderings of F2 which agree on Bn(F2) by ordering elements according to the orbit
of zero).

For each n, set

g+
n = max

<
{Bn(F2)}, g−n = min

<
{Bn(F2)}

Note that since ρ satisfies ρ(h)(0) > 0 if and only if h > 1, the map h 7→ ρ(h)(0) is
order-preserving. Thus for all w ∈ Bn(F2), we see that ρ(w)(0) lies in the interval
[ρ(g−n )(0), ρ(g+

n )(0)].

Problem 10.17. Show that if ρn(a)(x) = ρ(a)(x) and ρn(b)(x) = ρ(b)(x) for
all x ∈ [ρ(g−n )(0), ρ(g+

n )(0)], then ρn(w)(0) = ρ(w)(0) for all w ∈ Bn(F2). (Hint:
Use induction on the length of w)

In other words, Problem 10.17 shows that in order to satisfy (1) of Problem
10.16 the maps ρn(a) and ρn(b) need only agree with ρ(a) and ρ(b) respectively on
the interval [ρ(g−n )(0), ρ(g+

n )(0)]. Here is how to construct maps ρn(a) and ρn(b)
with this property that also satisfy (2) of Problem 10.16.

To keep the notation simple, instead of writing ρ(h)(0) below we will simply
write h(0) for all h ∈ F2, and in place of g±n we’ll write g±.

Referring to Problem 1.4 we may choose c1 ∈ {a±1} and c2 ∈ {b±1} such that
cig

+ > g+ for i = 1, 2. Set

f(x) =


c1(x) if x ≤ g+(0)(
c21g

+(0)− c1g+(0)

c2g+(0)− g+(0)

)
(x− g+(0)) + c1g

+(0) otherwise.

Note that the second part of the definition of f(x) is just a straight line con-
necting (g+(0), c1g

+(0)) to (c2g
+(0), c21g

+(0)), which makes f(x) both continuous
and order-preserving. Now define ρn(c1) = f , and ρn(c2) = ρ(c2). Since c1 and
c2 freely generate F2 this defines a homomorphism ρn : F2 → Homeo+(R), which
clearly satisfies ρn(a)(x) = ρ(a)(x) and ρn(b)(x) = ρ(b)(x) for all x ∈ [g−(0), g+(0)].
Therefore (1) of Problem 10.16 is satisfied, and (2) of Problem 10.16 is checked in
the following exercise.

Problem 10.18. Note that cig
+ is a reduced word of length n + 1 for each i,

since cig
+(0) does not lie in [g−(0), g+(0)]. Therefore the product (c1g

+)−1c2g
+ is a

reduced word, and so is not the identity. Check that ρn((c1g
+)−1c2g

+)(0) = 0, thus
completing the proof of 10.15. (Hint: Rewrite (c1g

+)−1c2g
+ as (c1g

+)−1c−1
1 c1c2g

+,
and use the formula for f above).

That the space LO(Fn) admits no isolated points has, to date, been proved in
many different ways [20, 87, 76, 58], although it was first proved by McCleary
[69]. In fact, more is known:

Theorem 10.19. [20, 87, 58] Let Fn denote the free group on n > 1 generators.
Then the action of Fn on LO(Fn) admits a dense orbit.
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Unfortunately very little is known in the case of bi-orderings, and at the time
of this writing the following is still open for n ≥ 2.

Question 10.20. Does O(Fn) have isolated points?

10.5. Examples of groups with isolated orderings

As a first example of isolated orderings, we can revisit the Klein bottle group.
Since there are only four left orderings of the group G = 〈x, y : xyx−1 = y−1〉, the
space LO(G) is finite and all four of its points are isolated. So, groups with finitely
many orderings exist, and obviously all of their orderings will be isolated. Such
groups are not a source of particularly interesting examples since groups admit-
ting finitely many left-orderings are completely classified by the following theorem,
attributed to Tararin.

Theorem 10.21. [59, Proposition 5.2.1] Let G be a left-orderable group. If
G admits only finitely many left-orderings, then G admits a unique sequence of
normal subgroups {1} = G0 / G1 / · · · / Gn = G such that each Gi+1/Gi is torsion-
free Abelian of rank one, and no quotient Gi+2/Gi is bi-orderable. Conversely if G
admits such a sequence of normal subgroups, then LO(G) is finite and consists of
exactly 2n points.

Problem 10.22. For a group G with a sequence of normal subgroups as in the
preceding theorem, describe all of its left-orderings.

For an example of a ‘genuine’ isolated point, in the sense that the group admits
infinitely many left-orderings (some of which are isolated), we turn to the braid
groups. Recall from Section 7.2 that the braid groups are left-orderable, with the
standard ordering (called the Dehornoy ordering ) defined in terms of i-positivity of
representative words in the generators σi. We saw that a word w in the generators
σ1, . . . , σn−1 is called i-positive (resp. i-negative) if w contains no generators σj
with j < i, and all occurences of σi have positive (resp. negative) exponent. A braid
β is called i-positive if it admits an i-positive representative word. The positive
cone of the Dehornoy ordering is the set of all braids that are i-positive for some i.
Thus if we let PD denote the positive cone of the Dehornoy ordering and use Pi to
denote the set of all i-positive braids, then

PD = P1 ∪ P2 ∪ P3 ∪ · · · ∪ Pn−1.

Closely related to the Dehornoy ordering is the Dubrovina-Dubrovin ordering of
the braid group Bn, with positive cone PDD [29]. Its positive cone is

PDD = P1 ∪ P−1
2 ∪ · · · ∪ P (−1)n

n−1 ,

that is, PDD contains all those braids which are i-positive for some odd number i,
and all those braids which are i-negative for some even number i.

Problem 10.23. Show that for each integer i ∈ {1, . . . , n− 1} the set

{1} ∪ Pi ∪ Pi+1 ∪ · · · ∪ Pn−1 ∪ P−1
i ∪ P−1

i+1 ∪ · · · ∪ P
−1
n−1

is a convex subgroup of Bn with respect to the Dehornoy ordering. Combine this
with the result of Problem 2.13, and the remarks following that problem, in order
to prove that PDD is a positive cone.
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Set βi = (σi · · ·σn−1)(−1)i−1

, where 1 ≤ i ≤ n − 1. The elements βi generate
the group Bn, and in fact they are the key to describing a famous isolated point in
the space LO(Bn).

Theorem 10.24. [29] The positive cone PDD is generated as a semigroup by
the elements βi, and is thus an isolated point in LO(Bn).

Problem 10.25. By appropriately modifying the proof of Theorem 7.13, prove
Theorem 10.24 in the case n = 3. That is, show that every element of B3 can
be represented by a word in which the generators β1 = σ1σ2 and β2 = σ−1

2 occur
exclusively with positive exponents, or exclusively with negative exponents.

Problem 10.26. Use the fact that PDD is equal to the subsemigroup of Bn
generated by β1, . . . , βn−1 to show that PDD is an isolated point in LO(Bn). Argue
more generally that if a positive cone of a left-ordered group G is finitely generated
as a subsemigroup, then it is an isolated point in LO(G).

By contrast, the Dehornoy ordering of Bn is not isolated in LO(Bn). In fact,
Navas observed that the following is true (see for example [28] p.269):

Theorem 10.27. For n ≥ 3, the Dehornoy ordering PD is a limit point of its
conjugates in LO(Bn).

Corollary 10.28. For n ≥ 3, the positive cone PD of the Dehornoy ordering
is not finitely-generated as a subsemigroup of Bn.

For other examples of genuine isolated orderings, see [77, 51, 54, 52, 27].

10.6. The number of orderings of a group

In this section we will see a first application of compactness of LO(G), by show-
ing that LO(G) cannot be countably infinite. In contrast, O(G) can be countably
infinite [13]. We begin with the case of a Conradian left-ordered group.

Theorem 10.29. [59, Proposition 5.2.5] If a group G admits a Conradian left-
ordering, then LO(G) is either finite or uncountable.

The proof will follow by considering each way that G can fail to be a ‘Tararin
group’, one of the groups described in Theorem 10.21. In every case, one finds as
a result that G admits uncountably many left-orderings.

Problem 10.30. Suppose that G admits a Conradian left-ordering having in-
finitely many convex jumps. Show that by ‘flipping’ the orderings of the jumps, one
can create uncountably many left-orderings of G.

Problem 10.31. Suppose that G admits a Conradian left-ordering with convex
jumps {(Ci, Di)}i∈I . Show that if there is a jump (Ci, Di) such that Di/Ci is
torsion-free Abelian of rank greater than one, then G admits uncountably many
left-orderings.

If {1} = G0 /G1 / · · · /Gn = G and Gi+2/Gi is bi-orderable, then G fails to be
a Tararin group as well. The following Proposition is relevant to that case.

Proposition 10.32. [88, Lemma 2.1] Suppose that G is bi-orderable, and fits
into a short exact sequence
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1→ K → G
q→ H → 1

where both K and H are torsion-free Abelian of rank one. Then LO(G) is uncount-
able.

Proof. If G is Abelian, then G admits uncountably many left-orderings, by
Theorem 10.7. So we suppose G is not Abelian. Identify K with a subgroup of Q;
by Problem 10.10 we may assume the ordering of K as a subgroup of the ordered
group G agrees with the usual ordering of Q. Consider the map φ : H → Aut(K)
given by φ(h)(k) = gkg−1, where q(g) = h. It is easy to check that this independent
of the choice of g ∈ q−1(h). It also preserves the ordering of K as a subgroup of
the bi-ordered group G, which may be assumed to coincide with the ordering of K
as a subgroup of Q ordered in the usual way. By Lemma 10.33, φ corresponds to
multiplication by some positive rational number: φ(h)(k) = rk, where r = r(h) ∈
Q. Since G is non-Abelian, φ is a nontrivial homomorphism. If the kernel of φ were
nontrivial, the image of φ would be torsion since H is rank one Abelian. However
the only torsion element of Aut(K) is multiplication by −1, and if this were the
action of H on K then G would not be bi-orderable. Therefore φ : H → Aut(K) is
injective.

We claim that H ∼= Z. Suppose not, then by Problem 10.34 one can choose
h ∈ H not equal to the identity and infinitely many g1, g2, g3, . . . and n1, n2, n3, . . .
such that gni

i = h for all i. Then if φ(h) acts on k ∈ K according to φ(h)(k) = rk,
the elements gi must act according to φ(gni

i )(k) = rni
i k for some rational numbers

r, r1, r2, r3, . . . satisfying rni
i = r for all i. It is not possible to have infinitely many

solutions to rni
i = r (see Problem 10.35).

Thus H ∼= Z and so the sequence splits, and G ∼= K oφ H. Therefore we can
define a map ρ : G → Homeo+(R) as follows: Fix k ∈ K and set ρ(k)(x) = x + 1.
For all other k′ ∈ K, if (k′)q = kp, set ρ(k′)(x) = x + p/q. For the group H,
suppose that the generator is h and that φ(h)(k) = rk for all k ∈ K, where
r = r(h) ∈ Q. Then set ρ(h)(x) = rx for all x ∈ R. A priori this defines a map
ρ : K ∗ H → Homeo+(R), but because ρ(hkh−1) = ρ(φ(h)(k)) for all k ∈ K, it
descends to a map ρ : G → Homeo+(R). We can now define uncountably many
positive cones Pε ⊂ G by setting, for each irrational ε > 0,

Pε = {g ∈ G : ρ(g)(ε) > ε}.

Lemma 10.33 (Hion’s Lemma [43]). Suppose A and B are subgroups of the
additive group of reals, R and that f : A → B is an isomorphism which preserves
the natural order inherited from R. Then there is a positive real number r such that
f(a) = ra for all a. If A and B are subgroups of Q, then r ∈ Q.

Proof. Suppose there are a, a′ ∈ A such that f(a)/f(a′) 6= a/a′, say
f(a)/f(a′) < a/a′. Then we can find p, q ∈ Z with f(a)/f(a′) < p/q < a/a′.
We may assume that q and a′ (and hence f(a′)) are positive, and conclude that
pa′ < qa and pf(a′) > qf(a), a contradiction. So f(a)/a is constant for a 6= 0. The
last sentence of the lemma is obvious.

Problem 10.34. If H is a rank one torsion-free abelian group, then H is cyclic
if and only if for every h ∈ H there are only finitely many hi ∈ H and 0 < ni ∈ Z
such that hni

i = h.
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Problem 10.35. Verify that, given r ∈ Q, the equation rni
i = r has only finitely

many solutions with ni ∈ Z, ri ∈ Q.

Problem 10.36. Check the other details of the proof of Proposition 10.32. In
particular show that Pε 6= Pε′ for ε < ε′ by arguing that K must be dense in Q, as
it is closed under multiplication by rk where 0 < r 6= 1 corresponds to the action of
the generator of H. Then one can find appropriate k ∈ K and h ∈ H so that for
the corresponding g = (k, h) ∈ G, the graph of the line ρ(g)(x) = rx+p/q intersects
the diagonal between x = ε and x = ε′.

Problem 10.37. Use the result of Proposition 10.32 to show that if G ad-
mits a unique sequence of normal subgroups {1} = G0 / G1 / · · · / Gn = G with
rank one Abelian quotients and Gi/Gi−2 is bi-orderable for some i, then LO(G) is
uncountable.

Proof of Theorem 10.29. Suppose thatG admits a Conradian left-ordering
and that LO(G) is infinite and countable. By Problems 10.30 and 10.31, countabil-
ity of LO(G) implies that our given Conradian ordering has finitely many convex
jumps, each with a rank one Abelian quotient. Let us name the convex subgroups

{1} = G0 / G1 / · · · / Gn = G

with Gi+1/Gi rank one Abelian for all i. To establish uniqueness, suppose there is
another series of normal subgroups

{1} = H0 / H1 / · · · / Hn = G

with rank one Abelian quotients. If Gn−1 6= Hn−1, set K = Gn−1 ∩ Hn−1 and
argue that G/K is torsion free Abelian as follows. Since G/Gn−1 is Abelian, we
have [G,G] ⊂ Gn−1 and similarly [G,G] ⊂ Hn−1, so [G,G] ⊂ K and G/K is
Abelian. To see it’s torsion free, note that any nonidentity element of G/K maps
to a nonidentity element in (at least) one of G/Gn−1 or H/Hn−1 via the natural
projections, so it has a torsion free image, and therefore itself has infinite order.
If the rank of G/K is greater than one, then G/K admits uncountably many left-
orderings by Sikora’s theorem, which implies that G also has uncountably many
left-orderings. So the rank of G/K must be one.

Consider the exact sequence

1→ Hn−1/K → G/K → G/Hn−1 → 1

of torsion-free Abelian groups. By additivity of rank we see that the rank ofHn−1/K
must be zero, so Hn−1 = K. Similarly Gn−1 = K and we conclude Hn−1 = Gn−1.
By induction we conclude that the two series of normal subgroups coincide.

Finally, we are in the case where LO(G) is countable and infinite and G must
have a unique finite series of normal subgroups having rank one Abelian quotients.
By Theorem 10.21, this can only be possible if one of the quotients Gi/Gi−2 is
bi-orderable. In that case, Problem 10.37 shows that in fact G has uncountably
many left-orderings. This contradiction finishes the proof.

We can now prove the general result, due to Peter Linnell.

Theorem 10.38. [67] If G is a left-orderable group, then LO(G) is either finite
or uncountable.
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Proof. We use the conjugation action of G on LO(G) to construct a minimal
invariant set. Set

S = {A ⊂ LO(G) : A is nonempty, closed and G-invariant}

The set S is nonempty since it contains LO(G), and it is partially ordered by
inclusion. Moreover if we have any chain of nonempty, closed, G-invariant sets
{Ai}i∈I then this collection has the finite intersection property, so by compactness
of LO(G) we have

∅ 6=
⋂
i∈I

Ai ∈ S

Thus every chain has a lower bound, and so by Zorn’s lemma there is a minimal
element of S, call it M . The set M is a minimal invariant set.

Problem 10.39. Show that a the minimal G-invariant closed subset M ⊂
LO(G) satisfies:

(1) If A is a closed, G-invariant subset of LO(G) and A∩M 6= ∅, then M ⊂ A.
(2) Denote the orbit of P ∈ LO(G) by G(P ). For all P ∈ M , we have

G(P ) = M .

Now we consider two cases, first the case where M is finite. In this case, every
positive cone P ∈ M has a finite orbit. But then the stabilizer GP of such a cone
P is a finite index subgroup of G, and the left-ordering of G corresponding to P
is a bi-ordering when restricted to GP . By Problem 9.9, P must be the positive
cone of a Conradian left-ordering. By Theorem 10.29, LO(G) is then either finite
or uncountable.

Suppose then that M is infinite, and that there is P ∈ M which is isolated
(in M). Since M is infinite and G(P ) = M , the orbit G(P ) is infinite and thus
has an accumulation point, say Q, since M is compact. Note that Q is not in
G(P ) since Q is not an isolated point, and yet we have G(Q) = M = G(P ),

meaning P ∈ G(Q), a contradiction. Thus M has no isolated points. Now since
M is a compact Hausdorff space without isolated points, it is uncountable (see, for
example [73], Theorem 27.7), and thus LO(G) is uncountable.

10.7. Recurrent orderings and a theorem of Witte-Morris

Given that some left-orderable groups are not Conradian left-orderable, it is a
natural question to ask what additional properties a left-orderable group G must
have in order to become a Conradian left-orderable group.

Conjecture 10.40. [66] Suppose that G is a left-orderable group that does not
contain a non-Abelian free subgroup. Then G is Conradian left-orderable.

A particular class of groups containing no non-Abelian free subgroups are
amenable groups. There are many equivalent definitions of amenability, but we
present the one that is most directly connected to our present setting. Recall that
a measure µ on a space X is called a probability measure if µ(X) = 1.

Definition 10.41. A group G is amenable if whenever G acts by continuous
maps on a compact Hausdorff space X, there exists a probability measure µ on X
such that µ(U) = µ(g(U)) for all g ∈ G and all measurable sets U ⊂ X.
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The main ingredient we require is the Poincaré recurrence theorem, stated here
in the form that we need.

Theorem 10.42. Let X be a space with probability measure µ, A any measur-
able subset, and suppose that f : X → X is a homeomorphism which preserves µ.
Then there is a subset E ⊂ X such that µ(E) = 0 and for each x ∈ A\E there exists
an infinite sequence of positive integers n1 < n2 < n3 < . . . such that fni(x) ∈ A
for every i. (see for example [72], Proposition 3.1).

In other words, as long as we avoid a few bad points (of which there are very
few) we can be sure that the iterates fni(x) return very near to x infinitely often.

Theorem 10.43. [72] Suppose that G is a countable left-orderable group. If G
is amenable, then it is Conradian left-orderable.

Proof. Assuming G is left-orderable, amenability gives us a probability mea-
sure on LO(G) that is invariant under the action of G. Fix elements g1, g2, g3, . . . , gn
of G, set

Ug1,...,gn =

n−1⋂
i=1

Ug−1
i gi+1

(recall that Ug = {P ∈ LO(G) : g ∈ P}). Choose an element g ∈ G. We apply the
Poincaré recurrence theorem with X = LO(G), the action of g−1 in place of the map
f , and the set Ug1,...,gn in place of A. The conclusion of the theorem is that there
exists a set Eg,g1,...,gn of measure zero such that for each P ∈ Ug1,...,gn \ Eg,g1,...,gn
there exists an increasing sequence of integers {ni} such that gniPg−ni ∈ Ug1,...,gn
for all ni. This means there are infinitely many ni such that the inequalities

g1g
ni < g2g

ni < . . . < gng
ni

hold. The union of all sets of the form Eg,g1,...,gn is again a set of measure zero
since it is a countable union (G is countable), so there is a positive cone P that
is not in any such set. The ordering corresponding to P satisfies: for every finite
subset {g1, . . . , gn} and every g ∈ G there exists an increasing sequence of integers
{ni} such that

g1g
ni < g2g

ni < . . . < gng
ni

In particular, for every positive g, h ∈ G there exist corresponding ni such that
gni < hgni for all ni. Since g < g2 < . . . < gni , we find g < hgni and so the
ordering is Conradian.

It turns out that this argument actually yields orderings with a property that
is strictly stronger than being Conradian, which is called recurrent for every cyclic
subgroup (or simply a recurrent ordering).

Definition 10.44. A left-ordering < of the group G is recurrent if for every
finite subset {g1, . . . , gn} of G satisfying g1 < g2 < . . . < gn and every g ∈ G there
exists an increasing sequence of integers {ni} such that

g1g
ni < g2g

ni < . . . < gng
ni .

As we have already pointed out, a recurrent ordering is Conradian. On the
other hand, the converse does not hold.
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Problem 10.45. Consider the group G that fits into the short exact sequence

0→ Q2 → G→ Z→ 0

where n ∈ Z acts on Q2 by multiplication from the left by An, where A =

(
2 0
0 1

2

)
.

Since the sequence above splits, G = Q2 × Z as a set, with multiplication of
(~v1, k1), (~v2, k2) ∈ Q2 × Z given by

(~v1, k1) · (~v2, k2) = (Ak2 ~v1 + ~v2, k1 + k2).

Order Z in the usual way. Order Q2 by choosing ~w ∈ R2 in the second quadrant
with irrational slope, and declaring ~v1 < ~v2 if and only if ~w · ~v1 < ~w · ~v2 as in
Problem 1.7. Now left-order G lexicographically as in Problem 1.8.

Show that the resulting ordering on G is Conradian, by not recurrent. (Hint:
To show that it is not recurrent, suppose that ~u lies in the first quadrant and satisfies
~w · ~u > 0, and consider the iterates Ak~u. Take, as in the definition of recurrent,
g1 = (~0, 0), g2 = (~u, 0) and g = (~0, 1) to arrive at a contradiction.)

In fact, there are Conradian left-orderable groups which admit no recurrent
orderings at all. If one takes F to be a free finite index subgroup of SL(2,Z) and G
to be the natural semidirect product F nZ2, then G admits no recurrent orderings
although it is Conradian left-orderable [72, Example 4.6].
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co-orientable foliation, 69

codimension, 63

complete presentation, 60

conrad homomorphism, 101

Conradian jump, 101

Conradian ordering, 101

convex jump, 19, 101

convex subgroup, 19

crystallographic group, 13

Dehn twist, 96
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Homeo+(R) , 3
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irreducible 3-manifold, 40, 53

isolated ordering, 8, 115
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Magnus expansion, 27

mapping class group, 80

Markov moves, 90
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nonorientable surface, 3
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ordered group, 1

piecewise linear, 95

Poincaré dodecahedral space, 55

Poincaré disk model, 82

positive cone, 5

prime knot, 36, 91

property P, 61

pure braids, 78

rational homology sphere, 57

recurrent ordering, 120

Reeb foliation, 65

relatively convex, 19

residually free, 26
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Seifert fibring, 66
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stabilizer, 20

strict ordering, 1

strict total ordering, 1
surface group, 25

suspension foliation, 63

Tararin groups, 115

three-dimensional manifold, 53

topological space, 6
torsion-free, 2

torus knots, 36, 42

totally disconnected, 7
twist knots, 48

two-bridge knots, 48

Tychonoff topology, 8, 109

unique roots, 5

universal circle, 73

Weeks manifold, 57

Wirtinger presentation, 38
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