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BRAID ORDERING AND KNOT GENUS

TETSUYA ITO

Abstract. The genus of knots is a one of the fundamental invari-
ant and can be seen as a complexity of knots. In this note, we give
a lower bound of genus using Dehornoy floor, which is a measure
of complexity of braids in terms of braid ordering.

1. Introduction

Let Bn = 〈σ1, · · · , σn−1|σiσjσi = σjσiσj |i − j| = 1, σiσj = σjσi |i −
j| ≥ 2〉 be a braid group of n-strands. A braid β ∈ Bn is called σ-
positive if β can be represented by a braid word which contains at least
one σi and contains no σ±1

1 , σ±1
2 · · · , σ±1

i−1, σ
−1
i for some 1 ≤ i ≤ n − 1.

We say α < β is true if and only if braid α−1β is σ-positive. It is known
that relation < defines total ordering of Bn which is invariant under left
multiplication of Bn: That is, if braids α, β ∈ Bn satisfy α < β, then
for all braids γ ∈ Bn, γα < γβ holds. We call this left-invariant total
ordering Dehornoy ordering. There are many other interpretations and
equivalent definitions of Dehornoy floor in both algebraic and geometric
way (See [DDRW], excellent survey of this topic). Thus, the Dehornoy
ordering is a quite natural structure of braid groups Bn.

Using Dehornoy ordering, we define Dehornoy floor [ ]D, which is
a measure of complexity of braids using Dehornoy ordering, as fol-
lows. Let ∆ = (σ1σ2 · · ·σn−1)(σ1σ2 · · ·σn−2) · · · (σ1σ2)(σ1) Garside’s

fundamental braid. The Garside’s fundamental braid has many special
properties and plays important role in Braid group. For example, the
center of braid group is an infinite cyclic group which is generated by
∆2.

Definition 1. Dehornoy floor [β]D of braid β ∈ Bn is a minimal

non-negative integer m which satisfies β ∈ (∆−2m−2, ∆2m+2), where

(∆−2m−2, ∆2m+2) = {α ∈ Bn | ∆−2m−2 < α < ∆2m+2}.

We must be careful that when we think about Dehornoy floor, which
Bn a braid β belongs to is very important. For example, for a braid
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β = (σ1σ2)
4, [β]D = 1 if we consider β ∈ B3, and [β]D = 0 if we consider

β ∈ B4. Fortunately, if we use braid groups to describe links, the
number of strands are always implicit, so there might be no confusion
about the number of braid strands. So in most cases, we omit to write
which Bn a braid β belongs to. Dehornoy floor is first appeared in [MN],
though they do not use the term ”Dehornoy floor”. In this paper, they
show Dehornoy floor can be seen as a restriction of admissibility of braid
moves. That is, if a closure of a braid β admits some braid moves such
as destabilization, which is defined by Aσn 7→ A, then Dehornoy floor
of β is bounded. In our previous work [I], we prove that Dehornoy floor
of braids gives some information about the position of essential surface
in closed braid complements, so gives some geometric information of
links represented by their closures. These works seems to suggest that
there exist more unknown relationships between braid ordering and
knot theory. The main purpose of this paper is to compare Dehornoy
floor, the fundamental complexity of braids via Dehornoy ordering, and
the genus of its closure, which is the most fundamental complexity of
knots via topology.

Our main result is following:

Theorem 1. Let β ∈ Bn be a braid and χ(β̂) be a maximal Euler

characteristics of an orientable spanning surface whose boundary is β̂.

Then, inequality

[β]D < 2 −
2χ(β̂)

n + 2
holds.

As a consequence, we obtain relationships between knot genus and
Dehornoy floor.

Corollary 1. Let K be an oriented knot and g(K) be its genus. If a

closure of a braid β ∈ Bn is K, then

[β]D <
4g(K)

n + 2
−

2

n + 2
+ 2

holds.

Acknowledgement . The author gratefully acknowledges the many
helpful suggestions of professor Toshitake Kohno during hte prepara-
tion of the paper.

2. Preliminaries

In this section, we prepare some of basic facts of braid ordering and
braid foliation theory which will be used to prove theorem 1.
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2.1. Property of Dehornoy floor. First we review following propo-
sition which is proved in [I].

Proposition 1 ([I]). If a braid β is conjugate to another braid repre-

sented by a braid word which contains s occurrence of σ1 and k occur-

rence of σ−1
1 , then [β]D < max{s, k}.

Proposition 1 allows us to estimate Dehornoy floor of a braid using
its representing word.

For later use, we prove a slightly different estimation of Dehornoy
floor using band generator. For 1 ≤ i < j ≤ n, let ai,j be a braid
defined by

ai,j = σjσj−1 · · ·σi+1σiσ
−1
i+1 · · ·σ

−1
j .

The braids ai,j can be seen as a boundary of twisted band attached
to i-th and j-th strands of braid and called band generator. We denote
a monoid which is generated of {ai,j|1 ≤ i < j ≤ n} by B+

n band. The
algebraic property of Band generator is studied in [BKL]. The main
property of band generator is that they gives another Garside structure
of Bn. That means, almost all results about positive braids B+

n , such
as algorithm to solve word or conjugacy problem remains true with
appropriate modification. We do not describe these properties of band
generator because we do not use them. See [BKL] for more details.
Only we need to prove theorem 1 is estimation of Dehornoy floor using
word length of band generators.

Lemma 1. If a braid β ∈ Bn is conjugate to a braid β ′ written by a

word which consists of products of m band generator ,then

m

n
> [β]D

holds.

To proof lemma 1, we need property S of Dehornoy ordering, which
asserts inserting σi strictly increase Dehornoy ordering.

Proposition 2 (Property S of Dehornoy ordering [DDRW]). For any

braids β1, β2 ∈ Bn and 1 ≤ i ≤ n − 1,

β1σiβ2 > β1β2 > β1σ
−1
i β2

holds.

Proof of lemma 1. We regard braid group Bn as a relative mapping
class group of punctured disc MCG(Dn, ∂Dn); That is, a group of
isotopy classes of homeomorphisms of Dn whose restriction of ∂Dn are
identities. Let β = α−1β ′α and p be a minimal non-negative integer
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which is larger than m
n
. We show β < ∆2p. The proof of ∆−2p < β is

similar. First we consider m = n case.
From property S, it suffices to consider the case β ′ ∈ B+

n band because
we can delete inverse of band generator by inserting some σi without
decreasing Dehornoy ordering. Let Γ be a graph in Dn, whose ver-
tices are puncture points of Dn and whose edges are arcs connecting
two distinct vertices, lying entirely in upper half of disc. Let D′ be a
disc which contains whole of Γ and whose boundary belongs to Γ (See
figure 1). Let l be a horizontal diameter of Dn which connects all of
puncture points, oriented left to right (See also figure 1). From geo-
metric interpretations of Dehornoy ordering given in [FGRRW], α < β

holds if and only if β(l) moves more left than α(l) when two arcs β(l)
and α(l) are isotoped to have minimum intersections. We denote edge
of Γ connecting i-th vertex and j-th vertex by ei,j. A band gener-
ator ai,j corresponds to a half Dehn-twist along the edge ei,j and a
braid α−1ai,jα corresponds to a half Dehn-twist along the arc α(ei,j).
Similarly, the square of Garside fundamental braid ∆2 corresponds to
Dehn-twist along ∂D′. Since ∂D′ consists of n edges, so does ∂α(D′).
Take edges e′1, e

′

2 · · · , e′n of α(Γ) so that edge-path e′1 ∪ e′2 · · ·∪ e′n forms
∂(α(D′)). We choose e′1 be a edge which intersect the arc l at leftmost
points: That means, the first intersection point of α(Γ) with l is an
intersection point of e′1 with l. Then the maximal element of n half
Dehn-twist along α(Γi,j) is b1b2b3 · · · bn where bi is a half Dehn-twist
along the edge e′i because all of the other braid words change l at fur-
ther points from starting point of l than b1b2b3 · · · bn, so b1b2b3 · · · bn(l)
moves ”most” left. It is easily checked that the braid b1b2b3 · · · bn is
strictly smaller than Dehn-twist along ∂α(D′) namely, ∆2, therefore
we conclude β < ∆2.

Since the braid ∆2 belongs to the center of Bn, by iterating this
argument, we conclude β < ∆2p. �
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Figure 1. Graph Γ
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We remark that there exist infinitely many families of left-invariant
total orderings of braid groups called Thurston-type ordering which con-
tain Dehornoy ordering (See [SW]) as a special one. Thurston type or-
derings have similar properties of Dehornoy ordering, such as property
S. The most of results in the paper also holds if we use Thurston-type
ordering instead of Dehornoy ordering after some appropriate modifi-
cation.

2.2. Braid foliation. In this section, we summarize basic machinery
of Birman-Menasco’s braid foliation theory in case of spanning sur-
face with maximal Euler characteristic, or alternatively, incompressible
spanning surface. For details of these techniques and theories, see [BF]
or [BM].

Fix an unknot A ∈ S3, called axis and choose a meridinal disc fibra-
tion H = { Hθ|θ ∈ [0, 2π]} of the solid torus S3\A. An oriented link L

in S3\A is called closed braid with axis A if L intersects every fiber Hθ

transversely and each fiber is oriented so that all intersections of L are
positive. It is easy to see a closed braid L intersects every fiber Hθ in
the same number of points, and we call this number braid index of L.

Note that closed braids β̂ obtained by braids β ∈ Bn as usual way are
indeed a closed braid with z−axis and braid index is n. Conversely, if
we cut solid torus S3\A along the fiber H0, we obtain a braid β. It
is known that isotopy in S3\A does not change conjugacy class of β

and if the isotopy fixes H0 ∩ β̂, obtained braid β does not change as a
element of braid group though geometrical configuration of strands are
varied.

Let F be an orientable, connected spanning surface of L with maxi-
mal Euler characteristics. An orientation of F is defined so that L = ∂F

holds. We remark that such a surface is always incompressible in S3\L.
Then the intersections of fiber {Hθ} with F induce a singular foliation
of F . The leaves of this foliation are connected components of inter-
section with fibers. Braid foliation techniques are, in short, modifying
this foliation simpler as possible and obtain standard position or rep-
resentation of braids. By the argument in [BF], F can be isotoped to
”general” position with respect to the fibration which satisfies

(1): Axis A pierces F transversely in finitely many points.
(2): For each point v ∈ A∩F , there exists neighborhood Nv of v

such that F ∩ Nv is radially foliated disc.
(3): All but finitely many fibers Hθ intersects F transversely, and

each of the exceptional fiber is tangent to F at exactly one
point. Moreover, each point of tangency is saddle tangency and
lies in the interior of F ∩ Hθ.
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Notice that the condition above is a bit stronger than usual general
position arguments, since usual general position arguments only tell us
that each tangency is local minimum, maximum, or saddle. This strong
sense of general position is achieved by first putting F in usual general
position, and then deleting local minimum or maximum tangencies.

We say fiber is Hθ regular if Hθ transverse F and singular if Hθ

tangent to F . In the foliation of F , we can assume there are only two
types of non-singular leaves. First one is a-arc, which is a arc with
one boundary point on L and the other on A. The other one is b-arc,
which is a arc with both endpoints on A. We can delete leaves which
are simple closed curves. We say b-arc b is essential if both components
of Hθ\b are pierced by L.

As shown in [BF], we can assume one more condition about foliation
of F .

(4): every b-arc is essential.

This condition is achieved by deleting all inessential leaves by pushing
across axis. From now on, we always assume that F satisfies condition
(1)-(4).

We call an intersection point of A with F vertex. Each vertex p,
the valance of vertex p is, by definition, the number of singular leaves
which pass p. We say singular point is aa-singularity if the singular
point is derived from two a-arcs. ab-singularity and bb-singularity are
defined by the same way. Each type of singularity has neighborhood
shown in figure 2, and we say such neighborhood regions. The decom-
position into regions defines cellular decomposition of F . We call this
cellular decomposition tiling. It is directly checked that the valance of
vertex previously defined one, the number of singular leaves passing
the vertex, coincide with the usual meaning of valance in this cellular
decomposition.

PSfrag repla
ements
aa-tile ab-tile bb-tile

Figure 2. aa-,ab-,bb- tiles
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3. Proof of theorem 1

In this section we prove theorem 1. The strategy is essentially the
same as that of our previous paper [I]. We first establish Euler char-
acteristic formula for spanning surface, then estimate Dehornoy floor
using valance of vertices in the tiling of the surface. Combining these
two results, we obtain desired estimation.

Let F be a spanning surface of a closed n− braid β̂ with maximal
Euler characteristics. Let V (a, b) be the number of vertices in the tiling
of F whose valance is a + b and having a a-arcs as edges and b b-arcs
as edges. We call such a vertex type(a, b)-vertex. The following lemma
has proved in [BM] using Euler characteristic arguments of cellular
decomposition determined by decomposition of tiles.

Lemma 2 (Birman-Menasco([BM])).

2V (1, 0) + 2V (0, 2) + V (0, 3) − 4χ(F )

= V (2, 1) + 2V (3, 0) +

∞∑

v=4

v∑

α=0

(v + α − 4)V (v, α)

Now we establish an estimation of Dehornoy floor using valance of
vertex in tiling of F . The argument is very similar to one appeared in
[I], but since there are two types of edges we require some additional
arguments.

Lemma 3. If F has (a, b)-type vertices, [β]D < a + b
2
. Especially, if

both a and b are non-zero, then [β]D < a + b
2
− 1

2
.

Proof. Let v be a (a, b)-type vertex of F and {Hθi
| i = 1, 2, · · · , a +

b θi < θi+1} be a sequence of singular fibers containing singular leaves
which pass vertex v. We denote a leaf in Hθ which passes v by δθ .

The first task we have to do is that to modify closed braid β̂ to special
position so that we can obtain the description of the braid. Take a
sufficiently small ε > 0 so that there are no singularities in the interval

[θi − ε, θi + ε] except Hθi
. We modify closed braid β̂ = L so that in

each intersection of F with fiber satisfies following condition.

(1) Hθi±ε ∩ L consists of the same n points in Hθi±ε
∼= D2 which

lies on horizontal diameter.
(2) Each vertices and a-arcs in a fiber Hθi±ε lies in lower half of disc
(3) The vertex v lies at leftmost position in the boundary of lower

half of disc.
(4) If all of {lθ} are b-arc in the interval [θi +ε, θi+1−ε], then these

b-arcs do not move in [θi + ε, θi+1 − ε].
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From condition (1), we can always consider sub-braiding in each
interval [θi − ε, θi + ε] and [θi + ε, θi+1 − ε]. We denote this modified
braid by β ′. Since above modification is merely isotopy of closed braid
and surface in the complement of axis, so β ′ are conjugate to β. We

remark that during the isotopy, H0∩β̂ can be change to make condition
(3) above is satisfied so in general β ′ is not identical with β.

First of all, we study braiding in [θi − ε, θi + ε]. It is directly checked
by seeing corresponding moves of leaves and braid strands near the
singularity, braiding in [θi − ε, θi + ε] can be written by

a1,j = (σjσj−1 · · ·σ2σ
±1
1 σ−1

2 · · ·σ−1
j )

, which is a merely band generator and corresponds to adding a twisting
band, if singularity contained in Hθi

is an aa-singularity. If singularity
in Hθi

is an ab-singularity, then braiding in [θi − ε, θi + ε] is given by

(σjσj−1 · · ·σ1) or (σ−1
1 σ−1

2 · · ·σ−1
j ).

See [BH] for detailed arguments to obtain braid word via braid foli-
ation. We say ab-singularity giving former types of words type a-b be-
cause along the neighborhood of such ab-singularity leaf lθ is changed
a-arc to b-arc. Similarly, ab-singularity giving latter type of words type

b-a. See figure 3 and 4. We remark that each type of ab-singularity,
there exists two kinds of ab-singularity. The first kind is that a-arc is
attached to b-arc from right, which is depicted in the figure 4(a) and
the other is from left, as depicted in the figure 4(b). We remark that
though both kinds of ab-singularity gives the same braid words, con-
figuration of b-arcs and strands after singularity are different. In the
remaining case, when singularity contained in Hθi

is a bb-singularity,
we can assume in the interval [θi − ε, θi + ε], L is not braided because
all of changes of leaves occur in b-arc so a-arcs do not move.

Figure 3. Corresponding moves of leaves and strands
in aa-singularity
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(a)

(b)
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Figure 4. Corresponding moves of leaves and strands
in ab-singularity

Next we study a braiding in the interval I = [θi + ε, θi+1 − ε].
There exist two types of such intervals [θi + ε, θi+1 − ε]: Namely,
(1) An interval between two aa-singularities, or interval between aa-

singularity and ab-singularity, and
(2) An interval between ab-singularity and aa-singularity, or an in-

terval between two bb-singularities.
We call each type of intervals type A, type B respectively because in

type A (resp. type B) interval, leaf lθ is a-arc (resp. b-arc).
In a type A interval I, lθ is always a-arc. Let δ be a strand of

link L which corresponds to boundary point of lθ. In braid diagram,
δ corresponds to 1-st strands. Then, δ is never braided with other
strands because in the interval I, lθ do not move. Therefore we can
write braiding in I as left figure of figure 5.

In the case of type B interval I, since δθ is essential, the leaf δθ

separates fiber Hθ into two components, both of which are pierced by
L. That means we can write braiding in I as a right figure of figure 5.

Now, we can obtain whole braiding of L. A next step is to simplify
obtained braid so that it contains less σ±1

1 .
First we consider a braiding in the interval J , which is an union of

ε-neighborhood of ab-singular point N and an adjacent type B interval
I. Our previous argument shows braiding in J can be written as in
the right figure of figure 6. It is directly checked that braiding in J are
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Figure 5. Braiding in intervals

modified as shown in figure 6 according to kinds of ab-singularity (we
show type a-b case in the figure. The case of type b-a is similar.) If ab-
singularity is from right, then braid box in I which contains strands 1
can be shifted to across braiding in N so that in the interval J braiding
contains only one σ±1

1 . If ab-singularity is from left, then braiding in N

is amalgamated into braid box in I which contains strands 1 so that we
can neglect braiding derived from ε-neighborhood of ab-singular point.

Figure 6. Modification near the ab-singularity

Next we observe that if two type B intervals I1, I2 are adjacent, then
by exchanging an order of braid box in I2, we can modify braiding in
the interval I1 ∪ I2 as in figure 7 which contains only one σ1 and σ−1

1 .
Such an exchange of braid blocks is indeed possible because two braid
blocks are separated by b-arc lθ, so they are non braided each other.
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Figure 7. Modification in union of two type BB intervals

Now we estimate how many σ1 and σ−1
1 the braid β ′ can contain.

If b = 0, then from argument above, braid β ′ has at most a σ±1
1 and

if a = 0, then braid β ′ has at most b
2

σ±1
1 . Therefore in these cases,

we obtain desired estimation by proposition 1. So now, we assume
that a 6= 0 and b 6= 0. In this case, there must exist at least two ab-
singularities and the cycle of singularities around v are decomposed to
some repetition of sub-cycles

{aa → aa → · · · → aa︸ ︷︷ ︸
ktimes

→ ab → bb → bb → · · · → bb︸ ︷︷ ︸
ltimes

→ ab}

which contains k aa-singularity and l bb-singularity (k, l might be zero).
From above arguments, one aa-singularity gives at most one σ1 or

σ1±1 and type A intervals and bb-singularities have no contribution
to the number of σ±1

1 . Now we reduce the number of σ1, σ
−1
1 derived

from ab-singularities and type B intervals using modification described
above.

If two ab-singularity is from left, then we can amalgamate braiding
derived from ab-singularity into adjacent braid blocks derived from
type B interval. In this case, we only consider the contribution of σ±1

1

derived from type B intervals. In this case, there exist l + 1 type B
intervals, so these intervals contribute at most l+1

2
σ±1

1 . Thus, in this

case the sub-cycle contains at most l+1
2

+ k σ1 or σ−1
1 .

Now assume that one of ab-singularity is from left and the other is
from right. Then the ab-singularity from right is modified together
with adjacent type B interval, and gives one σ1 or σ−1. This mod-
ification delete one type B intervals. The ab-singularity from left is
amalagamated with adjacent type B intervals, so we can neglect it.
The number of remaining type B intervals is l, so type B intervals give
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at most l
2

σ±1
1 . As a result, in this case there are at most l

2
+ 1 + k σ1

or σ−1
1 in the sub-cycle.

Finally, if both of ab-singularity is from right, then ab-singularities,
modified with adjacent type B intervals, gives one σ1 and σ−1

1 . This
modification delete two type B intervals. The number of remaining type
B intervals is l − 1, and they contribute at most l−1

2
σ±1

1 . Therefore in

this case sub-cycle contains at most l−1
2

+ 1 + k σ±1
1 .

From above argument, we conclude that such sub cycle contains at
most k + 1+ l

2
σ±1

1 . Therefore if we want to braid β ′ contain σ1 or σ−1
1

as many as possible, then cycle of singularity around v must contain
only one sub-cycle described above. In such cycle, there are a − 1 aa-
singularities and b − 1 bb-singularities, so we conclude that modified
braid β ′ has word representation which has at most a + b−1

2
σ1 or σ−1

1 .
Since original braid β is conjugate to β ′, by proposition 1 we obtain
[β]D < a + b

2
− 1

2
. �

Now we are ready to prove theorem 1.

Proof of theorem 1. Let L be an oriented link and F be a Seifert surface
of L with maximal Euler characteristics. Take a closed braid represen-

tative β̂ of L and isotope F so that F is braid-foliated position. If there
exists at least one vertices of either type (2,0), (1,1), (1,2), (0,2), (0,3)
or (0,4), then lemma 3 shows [β]D < 2. Therefore we can assume that
there exist no vertices of such types. Thus, now Euler characteristic
formula is

−4χ(F ) = V (2, 1) + 2V (3, 0) +

∞∑

v=4

v∑

a=0

(v + a − 4)V (a, v − a)

.
First assume that F is foliated by only a-arcs. In this case, there

exist exactly n vertices on F and exactly−χ(F ) + n aa-singularity on
F because aa-singularity can be seen as a twisted band attached to
discs which are neighborhood of vertices ([BH]). Therefore, a braid β ′

is written as a product of n−χ(F ) band generators, so lemma 1 shows

[β ′]D < 1− χ(F )
n

. Since original braid β is conjugate to β ′, we establish

[β]D < 1 − χ(F )
n

< 2 − 2χ(F )
n+2

from lemma 1.
Thus, we can assume F contains both b-arc and a-arcs. In such

cases there exist at least n + 2 vertices in the foliation, so for any
V (a, b) which appears in right-side of Euler characteristics formula and
minimize a + b

2
= v+a

2
,

−4χ(F ) ≥ (2a + b − 4)(n + 2)
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holds. Therefore if V (a, b) is non-zero and minimize a + b
2
, then

inequality
−2χ(F )

n + 2
+ 2 ≥ a +

b

2
holds. Therefore lemma 3 gives desired estimation. �

Now we state a corollary of theorem 1 concerning the author’s pre-
vious paper. In the author’s previous paper [I], the author obtained
following constructions of hyperbolic knots. Let MCG(Dn) be a map-
ping class groups of n-punctured disc and π : Bn → MCG(Dn) be a
natural projection regarding Bn as isotopy classes of homeomorphisms
of disc. For a pseudo-Anosov mapping class [f ] ∈ MCG(Dn), let

P ([f ]) = {β̂ | β ∈ π−1([f ]), [β]D ≥ 3}. In [I], the author shows P ([f ])
consists of infinite number of hyperbolic knots and for another pseudo-
Anosov mapping class [g] which is not conjugate to [f ], the intersection
of P ([f ]) and P ([g]) is finite.

Since every hyperbolic knots are represented by a closure of pseudo-
Anosov braid, one might expect this construction of hyperbolic knots
produces all hyperbolic knots. However, this is not true.

Corollary 2. Genus one hyperbolic knots do not appear as an element

of P ([f ]).

Proof. Let K be a genus one hyperbolic knot. By corollary 1, we obtain

for every closed braid representative β̂ of K, [β]D < 3. Thus, such a
knot do not appear as a element of P ([f ]). �

Finally, we mention a conjecture related to main result of the paper.
Though corollary 1 concerns about 3-genus of knots and Dehornoy
floor, the author (weakly) conjectures that the same inequality holds
also between slice genus of knots and Dehornoy floor of braids. In some
cases this conjecture is easily confirmed: Closed braid representative of
a slice knot K♯K has Dehornoy floor at most 1 so conjecture is trivially
holds and slice-Bennequin inequality implies quasi-positive braid also
satisfies this conjecture.
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