

3k – 4 THEOREM FOR ORDERED GROUPS

PREM PRAKASH PANDEY

ABSTRACT. Recently, G. A. Freiman, M. Herzog, P. Longobardi, M. Maj proved two ‘structure theorems’ for ordered groups [1]. We give elementary proof of these two theorems.

1. INTRODUCTION

For any group G (written multiplicatively) and a subset S of G we define $S^2 = \{ab : a, b \in S\}$. Then, the main theorem of [1] is

Theorem 1.1. *[Theorem 1.3, [1]] Let G be an ordered group and S be a finite subset of G . If $|S^2| \leq 3|S| - 3$ then the subgroup generated by S is an abelian subgroup of G .*

As a corollary to Theorem 1.1, they deduce a $3k - 4$ type theorem for ordered groups.

Theorem 1.2. *[Corollary 1.4, [1]] Let G be an ordered group and S be a finite subset of G with $|S| = k \geq 3$. If $|S^2| \leq 3|S| - 4$, then there exist two commuting elements x, y such that $S \subset \{yx^i : 0 \leq i \leq N\}$ for $N = |S^2| - |S|$.*

We give elementary proofs of Theorem 1.1 and Theorem 1.2. We shall always assume that G is an ordered group and S is a finite subset of G with k elements. We shall write $S = \{x_1, \dots, x_k\}$ and assume that $x_1 < \dots < x_k$.

2. PROOFS

As in the case of integers, the following inequality holds:

$$(1) \quad |S^2| \geq 2|S| - 1.$$

In equation (1) equality holds only if S is a geometric progression $\{yx^i : 0 \leq i \leq k\}$, with x, y two commuting elements of G .

Lemma 1. *If S is not a geometric progression then $|S^2| \geq 2|S|$.*

Date: February 14, 2017.

2010 *Mathematics Subject Classification.* 11P70.

Key words and phrases. 3k – 4 Theorem, ordered groups.

Proof. Let $S = \{x_1 < \dots < x_k\}$. Certainly

$$x_1x_1 < x_1x_2 < \dots < x_1x_k < x_2x_k < \dots < x_kx_k$$

are $2|S| - 1$ distinct elements in S^2 . If $|S^2| < 2|S|$ then

$$\{x_1x_1, x_1x_2, \dots, x_1x_k, x_2x_k, \dots, x_kx_k\} = S^2.$$

Now, consider the elements $x_2x_1 < x_2x_2 < \dots < x_2x_k$. All these elements are in S^2 and $x_1x_1 < x_2x_1, \dots, x_2x_{k-1} < x_2x_k$. Thus we must have

$$x_2x_1 = x_1x_2, x_2x_2 = x_1x_3, x_2x_3 = x_1x_4, \dots, x_2x_{k-1} = x_1x_k.$$

From the above relations it follows that x_1 and x_2 commute and for $i > 2$, x_i is contained in the subgroup generated by x_1, \dots, x_{i-1} . Consequently we get that each x_i commutes with each x_j for $i, j = 1, \dots, k$.

Put $y = x_1, x = x_2x_1^{-1}$, then x and y commute and $S = \{y, xy, x^2y, \dots, x^{k-1}y\}$. Thus, if S is not a geometric progression then $|S^2| \geq 2|S|$. \square

Proof of Theorem 1.2. We shall use induction on k . For $k = 3$, we have $|S^2| \leq 5$. We have five distinct elements $x_1^2 < x_1x_2 < x_2^2 < x_2x_3 < x_3^2$ in S^2 . Since $x_1x_3 \in S^2$, so x_1x_3 must equal to one of these five elements. Using the order relation, we get $x_1x_3 = x_2^2$. Similarly, we get $x_1x_2 = x_2x_1$. Let $y = x_1$ and $x = x_2x_1^{-1}$. Then x and y commute and $S = \{y, yx, yx^2\}$.

Now we assume that $k \geq 4$ and the theorem is true for any subset T of G with $|T| \leq k - 1$. Put $T = \{x_1, \dots, x_{k-1}\}$.

Case (1): $|T^2| \leq 3|T| - 4$.

By induction hypothesis, there are commuting elements x, y such that $T \subset \{yx^j : j = 0, \dots, M\}$ with $M = |T^2| - |T|$.

In case $x_k T \cap T^2 = \emptyset$, then, taking x_k^2 in account, we see that $|S^2| \geq |T^2| + (|T| + 1)$. Since $|T^2| \geq 2|T| - 1$, we immediately obtain $|S^2| \geq 3|S| - 3$, which contradicts the hypothesis. Thus, we get $x_k T \cap T^2 \neq \emptyset$. Consequently, there are $yx^i, yx^u, yx^v \in T$ such that $x_k yx^i = yx^u yx^v$. This gives $x_k = yx^{(u+v-i)}$ and $S \subset \{yx^j : j = 0, \dots, M'\}$ with $M' = \max\{M, u + v - i\}$. Clearly the map $yx^j \mapsto j$ gives a 2 -isomorphism of S with a subset of \mathbb{Z} . From the Freiman's $3k - 4$ -theorem for integers, it follows that $M' \leq N$, and the theorem is proved.

Case (2): $|T^2| \geq 3|T| - 3 = 3|S| - 6$. Using the order relation of G we see that the elements x_k^2 and x_kx_{k-1} of S^2 are not in T^2 . Consider the element $x_{k-1}x_k$ of S^2 . If $x_{k-1}x_k \neq x_kx_{k-1}$ then we get $|S^2| \geq |T^2| + 3$, which contradicts the hypothesis. So, we obtain $x_{k-1}x_k = x_kx_{k-1}$. Next, we consider the element $x_{k-2}x_k$ of S^2 . If $x_{k-2}x_k \neq x_{k-1}^2$, then we already get $|S^2| \geq |T^2| + 3$, leading to a contradiction. Similarly it follows that $x_kx_{k-2} = x_{k-1}^2$. Thus we have

$$x_{k-1}x_k = x_kx_{k-1}, x_{k-2}x_k = x_kx_{k-2} = x_{k-1}^2.$$

Put $y = x_k, x = x_{k-1}x_k^{-1}$. Then x and y commute and $x_k = y, x_{k-1} = yx, x_{k-2} = yx^2$. Considering the elements $x_{k-3}x_k, x_{k-4}x_k, \dots, x_1x_k$ successively we see that each of

x_i is of the form yx^{t_i} . Clearly S is 2 – *isomorphic* to the subset $\{t_i : 1 \leq i \leq k\}$ of \mathbb{Z} . Now the theorem follows from the Freiman's 3k – 4-theorem for integers. \square

Proof of Theorem 1.1. We shall use induction on k . For $k = 1, 2$, the theorem holds trivially. Now, let $k \geq 3$ and assume that the theorem is true for any set T with $|T| \leq k - 1$. Put $T = \{x_1, \dots, x_{k-1}\}$.

Case (1): $|T^2| \leq 3|T| - 3$.

By induction hypothesis, T generates a commutative subgroup. If $x_k T \cap T^2 \neq \emptyset$ or $T x_k \cap T^2 \neq \emptyset$ then x_k lies in the subgroup generated by T . Consequently, S generates a commutative subgroup. So we assume that $x_k T \cap T^2 = \emptyset$ and $T x_k \cap T^2 = \emptyset$. Using the order relation, we see that $x_k^2 \notin T^2 \cup x_k T$, so we obtain

$$(2) \quad |S^2| \geq |T^2| + |T| + 1.$$

If T is not a geometric progression then, using Lemma 1 in (2), we see that $|S^2| \geq 3|S| - 2$, which contradicts the hypothesis. Thus, T must be a geometric progression. Next, observe that if $x_k T \neq T x_k$ then we have an element in $T x_k$ which is not in $T^2 \cup x_k T \cup \{x_k^2\}$. This leads to

$$(3) \quad |S^2| \geq |T^2| + |T| + 1 + 1.$$

From this one obtains $|S^2| \geq 3|S| - 2$, which contradicts the hypothesis. Thus, we must have $x_k T = T x_k$. Now using the order relation we see that x_k commutes with all the elements of T and consequently S generates an abelian group.

Case (2): $|T^2| > 3|T| - 3$.

As in the proof of Theorem 1.2 (the arguments used in Case (2)) we see that either $|S^2| \geq |T^2| + 3$ or $S = \{yx^{t_i} : 1 \leq i \leq k\}$ with commuting elements x and y . The former leads to a contradiction and hence we get $S = \{yx^{t_i} : 1 \leq i \leq k\}$ with commuting elements x and y . This proves the theorem. \square

Remark 1. *From the proof of Theorem 1.2 it is clear that the subgroup generated by S (with $|S| > 2$) is, in fact, generated by $|S| - 1$ or less elements.*

REFERENCES

[1] G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, *Small doubling in ordered groups* J. Aust. Math. Soc. **96** (2014), no. 3, 316–325.

(Prem Prakash Pandey) SCHOOL OF MATHEMATICAL SCIENCES, NISER BHUBANESWAR (HBNI), JATANI, KHURDA-650 052, INDIA.

E-mail address: premshivaganga@gmail.com