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Abstract

In this expository article we use topological ideas, notably com-
pactness, to establish certain basic properties of orderable groups.
Many of the properties we’ll discuss are well-known, but I believe
some of the proofs are new. These will be used, in turn, to prove some
orderability results, including the left-orderability of the group of PL
homeomorphisms of a surface with boundary, which are fixed on at
least one boundary component.

1 Orderable groups

A group G is left-orderable if there is a strict total ordering < of its elements
which is left-invariant, that is ¢ < h implies fg < fh for all f,g,h € G.

It is easy to check that, given a left-ordering < of GG, the positive cone P =
P. :={g € G|1 < g} satisfies:

(1) P- P C P (that is, P is a sub-semigroup)

(2) For each g € G, exactly one of g = 1,9 € P, or g! € P holds. (G is
partitioned: G = {1} U P U P)

Conversely, given a subset P of G satisfying (1) and (2), one can define a
left-ordering of G by
g<h < g'heP

The correspondence <— P is a bijection between the set of left orderings
and the set of subsets of G satisfying (1) and (2). It is sometimes more
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convenient to consider the left-ordering to be a subset of GG, in other words
an element of the power set P(G), rather than a relation on the elements of
G; we will adopt this viewpoint.

It is easy to see that a left-orderable group is also right-orderable; the criterion
g < h < gh™! € P defines a right-ordering with the same positive cone.
In fact the literature is about evenly divided between discussing left- and
right-ordered groups. If G has a left-ordering which is also right-invariant,
we say it is bi-orderable. This is equivalent to the positive cone being normal:

(3) g7'Pg C P for all g € G.

Useful reference books on orderable groups are [2], [14] and [19]. The article
[9] is also highly recommended.

1.1 Algebraic properties of orderable groups

Knowing that a group is orderable tells us that it has certain special algebraic
properties.

e Left-ordered groups G are torsion-free.

For if 1 < g, then g < ¢2, ¢ < ¢ and by transitivity 1 < ¢" for all n.
Similarly, if g < 1 no positive power of g can equal the identity.

e Suppose ¢ : G — H is a surjective homomorphism with kernel K. If K
and H are left-orderable, then so is G.

In fact, one can take a positive cone for G the union of the positive cone
of K and the preimage under ¢ of the positive cone of H. This does not
hold for biorderable groups unless there is a biordering of K invariant under
conjugation by elements of G.

e Left-orderable groups G satisfy the zero-divisor conjecture, that is, the
group ring ZG has no zero divisors.

The proof is not difficult, but we omit it here. It is unknown whether the
integral group ring of an arbitrary torsion-free group can have zero divisors.

o If GG is left-orderable and H is any group, and ZG and ZH are isomorphic
as rings, then G and H are isomorphic as groups. This is proved in [20].

e Bi-ordered groups do not have generalized torsion: if g is not the identity,



then any product of conjugates of g cannot be the identity.

This is because if g > 1 such a product must also be positive, and if g < 1
the product will be less than the identity too.

e Bi-ordered groups have unique roots: ¢" =h", n >0 = g =h.

To see this, one easily checks that in a biordered group inequalities multiply:
g < hand ¢ < h' imply gg’ < hh' (this doesn’t necessarily hold in a left-
ordered group). So if g < h we conclude ¢g* < h?, g*> < h3, etc. The powers
can never be equal.

e In a bi-ordered group, if ¢" commutes with h for some n > 0, then ¢
commutes with h.

For if g and h do not commute, say g < h~'gh. Multiply this inequality by
itself repeatedly to conclude g™ < h™'g"h.

1.2 Examples

Many groups of interest to topologists are orderable.

e 7" is bi-orderable, as an additive group. For example, use the lexicographic
ordering. There are uncountably many possible orderings of Z" for n > 2.
For Z2, one may take all integral lattice points to one side of a line through
the origin with irrational slope as an example of a positive cone.

e Free groups are bi-orderable. More generally, Vinogradov [30] proved the
free product of biorderable groups is biorderable.

e Braid groups are left-orderable (Dehornoy [I1]) but not bi-orderable for
more than two strands.

That wonderful and surprising result is what first got me interested in order-
able groups.

e Pure braid groups are bi-orderable. [20] [18]

e Fundamental groups of surfaces are bi-orderable, except the Klein bottle
group {(x,y|lz 'yz = y~') which is only left-orderable, and the projective
plane’s group which is not even left-orderable, as it is a torsion group.

This is proved in [25]. The Klein bottle group cannot be biordered. If it

were, the defining relation would imply that ¥ is positive if and only if y~! is



positive, a contradiction. However, it is left-orderable, because if one maps
it onto Z by killing the (normal) infinite cyclic subgroup (y), we have left-
orderable kernel and image.

e All classical knot groups are left-orderable and some (but not all) are
biorderable.

This is a consequence of a more general result about ordering 3-manifold
groups, which we will discuss in Section [7.1] See also [23] and [§].

e The group Homeo(I,0I) of homeomorphisms A of the unit interval I =
[0, 1], such that h(0) = 0 and h(1) = 1, is left-orderable. Here the group
operation is composition.

To see this, choose a well-ordering r; < 79 < --- of the rational numbers
in the interval (0,1). For two functions g, h € Homeo(I,0I) declare g < h
if and only if g(rx) < h(rg) in the usual ordering of I, where ry is the first
rational (in the well-ordering) at which the values of g and h differ.

A similar argument shows that the group of orientation-preserving homeo-
morphisms of the reals (or the rationals) is left-orderable, that is

e Homeo™ (R) is left-orderable.

The group SL(2,R) acts on the circle (for example by fractional linear trans-
formations of R U {o0}), and in fact has the homotopy type of S'. Tts
universal cover S’VL(Z, R) is a group which acts on the real numbers by order-
preserving homeomorphisms — it is one of the eight 3-manifold geometries of
Thurston [29]. Therefore it may be considered a subgroup of Homeo™ (R)
and we conclude

OSA'E(Q, R) is left-orderable.

2 Topology on the power set

For any set X, one may consider the collection of all its subsets — that is
its power set — often denoted P(X) or 2%. This latter notation indicates
that the power set may be identified with the set of all functions X — {0, 1}
(using von Neumann’s definition 2 := {0, 1}), via the characteristic function



Xa: X — {0, 1} associated to a subset A C X defined by

() lifx € A,
€Tr) =
xa 0if z ¢ A

The set 2% is a special case of a product space: one gives {0, 1} the discrete
topology, and 2% is considered the product of copies of {0, 1} indexed by the
set X. The product topology is the the smallest topology on the set 2% such
that for each z € X the sets {f € 2% : f(z) = 0} and {f € 2% : f(x) = 1}
are open. In other notation, the subsets of P(X) of the form

U, ={AC X|zre A} and U;={AC Xz ¢ A}

are open in the “Tychonoft” topology on the power set. Note that the sets
U, and U¢ are also closed, as they are each other’s complement. A basis
for the topology can be gotten by taking finite intersections of various U,
and US. A famous theorem of Tychonoff asserts that an arbitrary product
of compact spaces is again compact. Since the space {0,1} is compact, we
conclude:

Proposition 1. The power set P(X) of any set X, with the Tychonoff topol-
oqy, 18 compact. It is also totally disconnected.

We recall that a space is said to be totally disconnected if for each pair of
points, there exist disjoint open neighbourhoods of the two points whose
union is the whole space. If Y and Z are distinct points of P(X) (that is,
subsets of X), take x € X to be some element of one of those subsets, but
not the other; then the sets U, and US form such neighbourhoods.

If X is finite, then so is P(X) and the Tychonoff topology is just the discrete
topology. If X is countably infinite, then P(X) is homeomorphic to the
Cantor space obtained by deleting middle thirds successively of the interval
[0,1]. In particular, the Tychonoff topology on P(X) is metrizable when X
is countable.

Example: Let G be a group and define S(G) to be the collection of all
sub-semigroups of G. That is, S(G) = {S C Glg,h € § = gh € S}.
Note that S(G) C P(G). We will argue that S(G) is in fact a closed subset
P(G). Consider the complement P(G) \ S(G). A subset Y of X belongs to



P(G) \ S(G) if and only if there exist g, h € Y with gh ¢ Y. Therefore

PG\SG) = |J {U,nUNTS}

g,heG

Each term in the brackets is an open set, by definition, and therefore so is
the intersection of the three, and P(G) \ S(G) is a union of open sets. It
follows that S(G) is closed.

3 The spaces of orderings

We define the space of left-orderings, LO(G) of a group G to be the collection
of all subsets P C G satisfying (1) and (2) above. We have just shown that
(1) is a closed condition, and a similar argument shows the same for (2).
This proves the following.

Proposition 2. LO(G) is a closed subset of P(G), and is therefore a compact
and totally disconnected space (with the subspace topology).

This space was introduced in the literature by Adam Sikora [28] and has
been used to prove some fundamental properties of left-orderable groups:
[22], [211.

Although we are considering the topology on left-orderings to be the Ty-
chonoff topology inherited from P(G), there is a natural way to view it in
terms of inequalities. Suppose < is a left-invariant ordering of the group G,
and suppose we specify a finite number of inequalities g1 < hy,..., 9, < hp
which hold. Then the set of all left-orderings, in which all these inequalities
are still true, forms an open neighbourhood of < in LO(G). The set of all
such neighbourhoods is a basis for the topology of LO(G).

Similarly, we can define the set O(G) of bi-invariant orderings on the group
G to be the collection of subsets P C G satisfying (1), (2) and (3) above.
The reader can easily check the following.

Proposition 3. O(G) is a closed subset of LO(G), so it is also a compact
totally disconnected space.

Of course, for a given G the spaces LO(G) or O(G) may well be empty.
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4 Testing for orderability

Suppose we wish to determine if a given group G is left-orderable. Let’s as-
sume for the moment that G is finitely generated, with generators gy, ..., gn.
The length of a group element (relative to the choice of generators) is the
smallest integer k such that there is an expression of g in terms of the gen-
erators
9=95 " Yiy

where €; = £1. Let By(G) denote the set of all elements of G of length at
most k. This is a finite set, which includes the identity (length zero) and
also is invariant under taking inverses. It can be regarded as the k-ball of
the Cayley graph of G, relative to the given generators.

Now let us define a subset @ of B(G) to be a preorder of By(G) if

(1) (@ - Q)N Bx(G) C Q and

(2) B(G) = {1} UQUQ™.

To check whether, for fixed k, there exists a preorder of Bi(G) is a finite
task. If one can decide the word problem algorithmically for G (with given
generators), then there is an algorithm to decide whether a preorder exists.

Notice that if P is a positive cone of a left-ordering of G, then P N By (G) is
a preorder of By(G), so we conclude the following.

Proposition 4. Suppose G s finitely generated by gi,...,g,. If G is left-
orderable, then for every positive integer k, Bx(G) admits a preorder.

Perhaps surprisingly, there is a converse.

Theorem 1. Suppose G is generated by g1, ...,g, and that for all k > 1,
there is a preorder of Bx(G). Then G is left-orderable.

We will prove this using compactness of P(G). Consider the set
Pr = {R C G|RN Bi(G) is a preorder of By(G)}.

One argues as usual that Py, is a closed subset of P(G), and by hypothesis Py
is nonempty. Note also that a preorder of Byi1(G) intersected with By(G)
becomes a preorder of By(G). That is, we have Pyy1 C Pr. Thus the Py



form a nested descending sequence of nonempty compact subsets of P(X).
We conclude that

(P #0.
k=1

Also observe that if g,h belong to By(G) then gh is in Bg(G). So if
P € N2, Py then P is a sub-semigroup. Similarly P satisfies the partition
condition (2) and we conclude that

LO(G) = [P #1,
k=1

completing the proof. <

This means that if a finitely-generated group is not left-orderable, then the
algorithm described will discover that fact in finite time (although one does
not know when!) Moreover, one can design the algorithm to supply a proof
of non-left-orderability if it finds a By(G) having no preorder. On the other
hand, if the group under scrutiny is left-orderable, the algorithm will never
end. An example of such an algorithm, due to Nathan Dunfield, is described
in [6] and is available from Dunfield’s website. It was used, for example, to
find a proof that the fundamental group of the Weeks manifold — the smallest
volume closed hyperbolic 3-manifold — is not left-orderable.

The assumption of being finitely-generated is not really essential.

Theorem 2. A group is left-orderable if and only each of its finitely-generated
subgroups is left-orderable.

The proof will use the following version of compactness. A collection of sets
is said to have the finite intersection property if every finite subcollection
of the sets has a nonempty intersection. A space is compact if and only if
every collection of closed subsets with the finite intersection property has a
nonempty total intersection.

To prove Theorem [2| consider any finite subset F' of the given group G and
let (F) denote the subgroup of G' generated by F. Define

Q(F) :={Q C GIQ N (F) is a positive cone for (F)}



For each finite ' C G, Q(F) is a closed subset of P(G). The family of all
Q(F), for finite F' C G, is a collection of closed sets which has the finite
intersection property, because

QLU U---UF,) C Q(F)NQ(Fy)N---NQ(F,).

By compactness, (\guiterca QF) # 0.

One can easily verify that any element of (g i .pcq Q(F) is a left-ordering
of G, completing the proof. In fact

N QF) = LO@G).

finiteFCG

Corollary 1. An abelian group G is bi-orderable if and only if it is torsion-
free.

Proof. We need only show that torsion-free abelian groups are left-orderable
(which in this case is equivalent to bi-orderable). But any finitely generated
subgroup is isomorphic to Z™ for some n, which we have already seen to be
bi-orderable. The result follows from Theorem [2] <

5 Characterization of left-orderable groups

Following [9], we have a number of characterizations of left-orderability of a
group G. If X C G, we let S(X) denote the semigroup generated by X, that
is all elements of G expressible as (nonempty) products of elements of X (no
inverses allowed).

Theorem 3. A group G can be left-ordered if and only if for every finite
subset {x1,...,x,} of G which does not contain the identity, there exist e; =
+1 such that 1 € S(z%, ..., z5).

rrn

One direction is clear, for if < is a left-ordering of GG, just choose ¢; so that
x' is greater than the identity. For the converse, by Theorem [2| we may
assume that G is finitely generated, and by Theorem [I| we need only show
that each k-ball By(G), with respect to a fixed finite generating set, has a
preorder. Now consider {zy,...,z,} to be the entire set Bi(G) \ {1}, and
choose ¢; = +1 such that 1 & S(z{',...,z¢).

rrn



We can easily check that the set @ := Byp(G) N S(zf,...,x5) is a preorder
of Bi(G). Note that each z; in the list has its inverse z; also appearing, and
necessarily ¢; and €; are opposite in sign, for otherwise 1 would be in the

semigroup containing them. This completes the proof of Theorem [3]
Another characterization of left-orderability is due to Burns and Hale [4].

Theorem 4 (Burns-Hale). A group G is left-orderable if and only if for every
finitely-generated subgroup H # {1} of G, there exists a left-orderable group
L and a nontrivial homomorphism H — L.

Proof: The forward direction is obvious; just take L = H and use the
identity homomorphism. To prove the other direction, assume the subgroup
condition. According to Theorem [3], the result will follow if one can show:

Claim: For every finite subset {z1,...,2,} of G\ {1}, there exist ¢; = £1
such that 1 & S(zf', ..., x5).

n

We will establish this claim by induction on n. It is true for n = 1, for S(x;)
cannot contain the identity unles x; has finite order, which is impossible since
the cyclic subgroup (z;) must map nontrivially to a left-orderable (hence
torsion-free) group.

Next assume the claim true for all finite subsets of G'\ {1} having fewer than
n elements, and consider {zy,...,z,} C G\ {1}. By hypothesis, there is a
nontrivial homomorphism

h:{xy,...,2,) = L

where (L, <) is a left-ordered group. Not all the z; are in the kernel; we may
assume they are numbered so that

lifi=1,...
h(l‘z){?é e ) 7T7

=1ifr<i<n.

Now choose €1, ..., €6 sothat 1 < h(zf")in Lfori=1,...,r. Fori > r, the in-
duction hypothesis allows us to choose ¢; = 1 so that 1 & S(z;7 1, ..., z5).
We now check that 1 ¢ S(x7,...,z¢) by contradiction. Suppose that 1 is a
product of some of the z;*. If all the ¢ are greater than r, this is impossible,
as 1 ¢ S(x, 1, ..., z5). On the other hand if some 7 is less than or equal to
r, we see that h must send the product to an element strictly greater than

the identity in L, again a contradiction. <
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A group is said to be indicable if it has the group of integers Z as a quotient,
and locally indicable if each of its nontrivial finitely-generated subgroups is
indicable. This notion was introduced by Higman [I6] to study zero divisors
and units in group rings.

Corollary 2. Locally indicable groups are left-orderable.

We mention here, without proof, that biorderable groups are locally indica-
ble. So we have the implications: biorderable = locally indicable =—
left-orderable. Neither of these implications can be reversed. The braid
groups can be used to provide examples. The 3-strand braid group Bs is
locally indicable but not biorderable, and the 5-strand braid group Bj is
left-orderable, but not locally indicable. In fact the commutator subgroup
[Bs, Bs] is finitely generated and perfect [15], meaning it equals its own com-
mutator subgroup. Thus there cannot be a nontrivial homomorphism from
[Bs, Bs] to Z, or to any other abelian group. (See [12] for a more detailed
discussion of this.) Another example of a left-orderable group which is not
locally indicable is discussed at the end of Section [7.1]

Corollary 3. Suppose G is a group which has a (finite or infinite) family
of normal subgroups {Go,} such that NG = {1}. If all the factor groups
G /G, are left-orderable, then G is left-orderable.

This corollary follows, for if H is a finitely generated subgroup of G, one
can choose « for which H \ G, is nonempty. Then the composition of ho-
momorphisms H — G — G/G, is a nontrivial homomorphism of H to a
left-orderable group. <

6 Characterization of biorderable groups

Recall that P is the positive cone of a biordered group (G, <) if and only if it
satisfies conditions (1), (2) and (3) cited earlier. That is, it is a sub-semigroup
with the partition property and also normal. The proof of Theorem [2[ adapts
easily to a proof of the following.

Theorem 5. A group is biorderable if and only each of its finitely-generated
subgroups s biorderable.
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If G is a finitely generated biorderable group, we may consider, as before,
the set Bi(G) of all elements of length at most &, with respect to some fixed
set of generators. We will define a pre-biorder of By(G) to be a subset @ of
By (G) satisfying the conditions for a preorder

(1) (Q- Q)N B(G) C Q and

(2)) Be(G)={1}uQuQ@

plus the condition

(3") If g € By(G) then ¢7'Qg N By(G) C Q,

in other words, if one conjugates an element of () by an element of By(G),
and the result is still in By (G), then it must be in Q). Again, checking these
conditions, for a fixed By(G) is a finite task. Note that in (3'), closure under
the other conjugation gQg~! follows, because By(G) is closed under taking
inverses.

The following two theorems can be proved in a similar way to their counter-
parts in the previous section. We leave the details to the reader.

Theorem 6. A finitely-generated group G is bi-orderable if and only if for
every positive integer k, the k-ball By(G) relative to a fized set of generators
admits a pre-biorder.

Theorem 7. A group G is bi-orderable if and only if for every finite subset
{z1,...,2,} C G\ {1}, there exist ¢; = £1 such that 1 ¢ S, where S is the
sub-semigroup generated by the zi and their conjugates xj_le$]

This is similar to, but sharper than, a characterization due to Fuchs [13],
in which S is replaced by the semigroup generated by the x" and their
conjugates by all elements of G.

Note that there is no direct counterpart to the Burns-Hale theorem for
biorderable groups. If there were, then locally indicable groups should be
biorderable, which as mentioned above is not always the case. The inductive
step of the proof does not really carry over to the biorderable case, because
of all the conjugates which must be considered.
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7 Some applications

7.1 3-dimensional manifolds

Since this is being presented in the memoir of a knot theory conference, it is
appropriate to mention the following application of the Burns-Hale theorem,
although it already appears in [3] and is based on ideas in [I7]. We outline
the proof for the reader’s convenience, and since it is a nice application of
the Burns-Hale theorem.

Theorem 8. Suppose M is an orientable irreducible 3-manifold. Then m (M)
is left-orderable if and only if there is a nontrivial homomorphism h : m (M) —
L, where L is a left-orderable group.

Proof: The forward direction is obvious. For the other direction, we will
apply the Burns-Hale theorem. If H is a nontrivial finitely-generated sub-
group of m (M), we need to find a nontrivial homomorphism from H to a
left-orderable group.

Case 1: H has finite index. This is easy; consider the restriction of h to H,
which maps H nontrivially to L.

Case 2: H has infinite index. Then there is a covering p : M — M with
p*m(M ) = H. M is noncompact, but its fundamental group is finitely-
generated so, by a theorem of P. Scott [27], there is a compact 3-dimensional
submanifold C' C M with inclusion inducing an isomorphism

m(C) = 1 (M) = H.

C necessarily has nonempty boundary. If B C dC' is a boundary component
which is a 2-sphere, then irreducibility implies that B bounds a 3-ball in M.
That 3-ball either contains C' or its interior is disjoint from C. The former
can’t happen because that would imply the inclusion map m; (C) — (M) is
trivial. Therefore, we can adjoin that 3-ball to C', removing B as a boundary
component and not changing 7 (C'). This process allows us to eliminate 2-
spheres from 0C and assume that JC' is nonempty and has infinite homology
groups. By an Euler characteristic argument, we conclude that C' also has
infinite homology. Then we have surjections H = m(C') — H,(C) — Z, the

required left-orderable group. ¢

A similar argument shows the following.
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Figure 1: Surgery on the trefoil

Theorem 9. Suppose M is an orientable irreducible 3-manifold (possibly
with boundary) such that Hy(M) is infinite. Then m (M) is locally indicable.

Corollary 4. Knot groups are locally indicable and therefore left-orderable.

Surgery on a knot may or may not produce a 3-manifold with left-orderable
fundamental group. For example, consider the +1 surgery on the right-
handed trefoil as indicated in Figure 1. This means that we remove a tubu-
lar neighbourhood N of the knot and attach a solid torus S! x D? to the
complement of N in such a way that the meridian {*} x dD? is attached to
the longitudinal curve J which has linking number +1 with the knot. This is
Dehn’s original construction of the Poincaré homology sphere. This manifold
has fundamental group with presentation (see [24])

(z,2|(22)* = 2° = 2°)
Here, x and y represent meridian curves indicated in the picture and z = xy.
This group has order 120, and cannot be left-orderable, as it clearly has

torsion elements.

On the other hand, if we do surgery on the same knot, but along a longitudi-
nal curve with linking number —1 with the knot (as J in the figure, but with
two more full twists at the bottom) then we get another homology sphere,
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Figure 2: Showing the map of germs is nontrivial

with fundamental group

{a,b|(ba)* = b* = a").

As noted by Bergman [, this group embeds in SA'E(Z, R), which we have seen
is a left-orderable group . Therefore this group is left-orderable. Note that,
since it abelianizes to the trivial group, it is not locally indicable.

7.2 Homeomorphisms of surfaces

Suppose M is a connected triangulated surface with nonempty boundary. Let
B denote the union of some or all components of the boundary, so that B is
nonempty. Then define Homeo(M, B) to be the group of homeomorphisms
of M to itself which are pointwise fixed on B. The group operation is com-
position. Also let Homeopr (M, B) denote the subgroup of Homeo(M, B)
consisting of piecewise-linear homeomorphisms.

Theorem 10. Homeopp (M, B) is left-orderable.

Proof: We adapt an argument of Danny Calegary to this theorem for the
case Homeopr(I%,01%), a result he attributes to Bert Wiest and myself. By
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the Burns-Hale theorem, it suffices to consider a nontrivial finitely generated
subgroup H of Homeopr (M, B) and then find a left-orderable group L and
nontrivial homomorphism h : H — L. Each of the generators of H is a
function that fixes some polyhedral subset of M which contains B. The
intersection F' of these finitely many subsets will then be a polyhedral subset
of M which contains B; F' is exactly the global fixed point set of H. Choose
a point O in the middle of an edge of a 2-simplex, on the boundary of F,
so that small round neighbourhoods of O will intersect the complement of F'
in semidisks in some fixed triangulation of M. We will consider “germs” of
functions in H at O in the following sense. Any polygonal ray R emanating
from O is taken by the elements of H to a polygonal ray h(R) also originating
at O. If the initial segment of R leaves O at angle 6 (measured from an
edge of F' on which O lies), h(R) will be a polygonal curve whose initial
segment is at angle, say, A\,(f). Note that rays starting into F' will have
their initial segments fixed. The map h — (1/m)\; is a homomorphism
H — Homeo(1,0I), a left-ordered group.

We need to check that this homomorphism is nontrivial — that is, not every
ray is mapped to a polygonal ray which starts in exactly the same direction.
If that were the case, since O is on the boundary of the global fixed point
set, the generators cannot preserve the length of all initial rays. So some
generator h of H must send a triangle OAB linearly to a triangle OA’B’
in which the angles ZAOB and ZA'OB’ are equal and |OA| = |OB]|, but
|OA'| # |OB'| as in Figure 2.

If M is the midpoint of the side AB, then M’ = h(M) is the midpoint of
A’'B’. We leave the reader to verify by elementary geometry that the angles
ZAOM' and ZM'OB’ must be unequal. This shows that A, is not the
identity mapping. I thank Tali Pinsky for this observation. <

It is also true that the group of C'!' homeomorphisms of the disk, fixed on
the boundary, is left-orderable. This is discussed in Calegari’s blog [5].

Proposition 5. Homeopr (I1%,0I%) is not biorderable.

To see this, consider the PL maps f,qg : I? — I%, where I? is regarded as
the square in the zy-plane with 0 < x,y < 1. The map f is fixed on the
boundary of the square and rotates an inner square 1/4 < z,y < 3/4 by 180
degrees. The map g is the identity outside the inner square, takes the point
E = (3/8,5/8) to the point £’ = (5/8,3/8) and extended linearly on the
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four triangles formed by E and the sides of the inner square, taking them to
the triangles formed by E’ and the four sides of the inner square. One easily
checks that f~lgf = ¢g='. As with the Klein bottle group, the existence of
a biordering on Homeopr,(1?,0I%) would lead to the contradiction that g is
positive iff g7! is positive.

Open Question: Is Homeo(I? 0I?) left-orderable?

We note that Kérékjarto [31] showed in 1920 that Homeo(I?,0I?) is torsion-
free. See [10] for a discussion of this and similar results.

Added in proof: Theorem [10| has been generalized in [7] to show that
Homeopr, (M, B) is actually locally indicable. There is also a version in
higher dimensions.
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