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7 On the free product of ordered groups

A. A. Vinogradov∗

One of the fundamental questions of the theory of ordered groups is what
abstract groups are orderable. E. P. Shimbireva [2] showed that a free group
on any set of generators can be ordered. This leads to the following problem:
under what conditions is it possible to order a free product of arbitrary
groups?

Using the matrix presentation method for groups proposed by Malcev [1],
in the present work we establish the orderability of a free product of arbitrary
ordered groups.

Definition 1. An ordered group is a group endowed with a relation >, sat-
isfying the following conditions:

1. For any elements x and y of the group either x > y, or y > x, or x = y.
2. If x > y and y > z, then x > z.
3. If x > y, then axb > ayb for any elements a and b of the group.

Definition 2. An ordered ring (field) is a ring (field) such that:
1. the additive group of the ring (field) is ordered, and
2. for any elements a, x, y of the ring (field),

(a > 0 and x > y) =⇒ (ax > ay and xa > ya).

Definition 3. The group algebra kG of a group G over a field k is the algebra
whose elements are formal finite linear combinations of elements of G with
coefficients in k. These sums are multiplied and added in the usual way. A
group algebra has the obvious unit 1e, where e is the identity element of G
and 1 the unit of k.

Lemma 1. If k is an ordered field and G an ordered group, then kG is
orderable.

∗Published in Mat. Sb. (N.S.), 1949, Volume 25(67), Number 1, 163–168. Translated
from Russian by Victoria Lebed and Arnaud Mortier.
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Proof. Let A and A′ be elements of kG under the conditions of the lemma.
Then they can be written as

A =
n
∑

i=1

αiai, A′ =
n
∑

i=1

α′
iai,

where some of the αi and α′
i might be zero, and a1 > . . . > an. We set A > A′

if for some r ∈ {1, . . . , n},

α1 = α′
1, . . . , αr−1 = α′

r−1, αr > α′
r.

It is easy to check that the conditions from Definition 2 hold.

We call a triangular matrix any matrix, finite or infinite, with zeroes
under the main diagonal.

Lemma 2. The set of all triangular matrices with entries in an ordered unital
ring, and with every element on the main diagonal positive and invertible, is
an orderable group.

Proof. Triangular matrices of the form described in the statement clearly
form a group. Let X and Y be such matrices. We will call preceding entries
to a given entry xik, those1 xnm located to the right of or on the main diagonal,
for which

n − m ≤ k − i when m < i, and
n − m < k − i when m ≥ i.

Say that X > Y if either of the following conditions holds:
• xii = yii for i = 1, . . . , k − 1, and xkk > ykk for some k,
• xik > yik for some k > i, and their preceding entries coincide.

One easily checks that the conditions of Definition 1 are satisfied.

Lemma 3. The direct product of two ordered groups is orderable.

Proof. Let A and B be ordered groups. Say that (a, b) > (a′, b′) in A × B

if either a > a′, or a = a′ and b > b′. It is easy to check that the conditions
from Definition 1 hold.

We denote by M the direct product of two ordered groups A and B. A
pair of the form (a, e1) where e1 is the identity of B will be denoted simply
by a, and a pair of the form (e, b) where e is the identity of A will be denoted
by b.

1Translators’ note: we believe that there is a mistake here, xnm should probably be
replaced with xmn.

2



Consider now the following transcendental triangular matrix:

X =
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We denote by G the free abelian group generated by the entries xij of
X. This group is orderable (see [2] and references therein). By Lemma 1,
the group algebra K = QG is orderable, and thus has no zero divisors. The
field of fractions Frac(K) of this algebra is also orderable [3]. Consider the
group algebra L = Frac(K)M, where M = A × B as above. According to
Lemmas 1 and 3, the algebra L is orderable.

Lemma 4. Consider the diagonal matrix

A =
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where 1 is the unit of L and a ∈ L is neither 0 nor 1. Then every entry of
the matrix B = X−1AX located to the right of or on the main diagonal is
non-zero.

Proof. Put X−1 = (yik) and B = (bik). Clearly2,

yin = −xin +
∑

i<α1<n

xiα1
xα1n −

∑

i<α1<α2<n

xiα1
xα1α2

xα2n + · · · +

+(−1)n−ixi, i+1xi+1, i+2 . . . xn−1, n

2 Translators’ note: we corrected the last term of the formula given for yin. Note also
that this formula holds only for i 6= n, as yii = 1. As a result, the very last formula of this
proof is slightly incorrect when i is odd, but the main point—that the coefficient of bik is
not 0—seems to hold true after all.
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and
bik = 1(yi1x1k + yi3x3k + · · · + yi, 2l+1x2l+1, k) +

a(yi2x2k + yi4x4k + · · · + yi, 2rx2r, k).

From this follows:

yi1x1k + yi3x3k + · · · + yi, 2l+1x2l+1, k =

−
∑

xinxnk +
∑ ∑

i<α1<n

xiα1
xα1nxnk −

∑ ∑

i<α1<α2<n

xiα1
xα1α2

xα2nxnk + · · · ,

where the external sums are over all odd integers n between i and k. This
equality shows that the coefficient of 1 in bik is non-zero, and so bik 6= 0.

Theorem. The free product of two ordered groups can be endowed with a
group order whose restriction to each factor is the original order.

Proof. Consider, together with the triangular matrix X introduced before,
the following transcendental triangular matrices:
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.

Let A and B be ordered groups. As before, we construct an algebra
L = Frac(QG)M with M = A × B, where now the free abelian group G is
generated by the set of all formal entries not only of X, but also of Y , U ,
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and V . To every a = (a, e1) ∈ M we associate the diagonal matrix

Aa =
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and to every b = (e, b) ∈ M the diagonal matrix

Bb =
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Clearly the two sets of matrices A =
{

Aa

∣

∣

∣ a ∈ A

}

and B =
{

Bb

∣

∣

∣ b ∈ B

}

form groups naturally isomorphic to A and B respectively.

Put A = U−1X−1
AXU and B = V −1Y −1

BY V . We are going to show

that the representations of A and B given by a 7→ Aa and b 7→ Bb induce a
faithful representation of the free product A ∗ B, that is, given elements of
A ∗ B of type

r1 =
n
∏

1

aibi, r2 =

(

n
∏

1

aibi

)

ak, r3 = bk

n
∏

1

aibi, r4 =
n
∏

1

biai,

the corresponding matrices

R1 =
n
∏

1

Ai Bi, R2 =

(

n
∏

1

Ai Bi

)

Ak, R3 = Bk

n
∏

1

Ai Bi, R4 =
n
∏

1

Bi Ai

are not the identity matrix. We will write down the proof for R1 only, as the
three remaining cases are similar.

Every entry a
i

kl of the matrix Ai is equal to u−1
k a′ i

klul, where a′ i
kl is an entry

of A′
i = X−1AiX, and u−1

k and ul are diagonal entries of the matrices U−1

and U . Similarly, b
i

kl = v−1
k b′ i

klvl, where b′ i
kl is an entry of B′

i = X−1BiX, and
v−1

k and vl are diagonal entries of the matrices V −1 and V .
By Lemma 4, every matrix in the groups A′ = X−1

AX and B
′ = Y −1

BY

different from the identity matrix has only non-zero entries to the right of or
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on the main diagonal. The entries of the matrix R1 are given by

rik =
∑

i≤i2≤i3≤...≤i2n≤k

a
(1)
ii2

b
(1)

i2i3
a

(2)
i3i4

b
(2)

i4i5
· · · a

(n)
i2n−1,i2n

b
(n)

i2n,k.

Here i ≤ k. This sum can be regarded as a polynomial in the diagonal
entries of U , V and of their inverses. The coefficients of this polynomial
are products of entries of the matrices A′

1, B′
1, A′

2, B′
2, . . .. Observe that no

monomial occurs twice in the sum as it is given. Moreover, every coefficient
is non-zero, since it is a product of non-zero elements of the algebra L, which
has no zero divisors.

Therefore, we have a faithful representation of the free product A ∗ B,
given by

ri 7→ Ri.

Every diagonal entry of Ri is either the unit of L or a positive invertible
element of L distinct from the unit. It follows then from Lemma 2 that all
matrices of all four types Ri together form an orderable group. Therefore,
the free product A ∗ B is orderable.

The proof presented here for two factors obviously works for any number
of factors.
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