

# On the free product of ordered groups

A. A. Vinogradov\*

One of the fundamental questions of the theory of ordered groups is what abstract groups are orderable. E. P. Shimbireva [2] showed that a free group on any set of generators can be ordered. This leads to the following problem: under what conditions is it possible to order a free product of arbitrary groups?

Using the matrix presentation method for groups proposed by Malcev [1], in the present work we establish the orderability of a free product of arbitrary ordered groups.

**Definition 1.** An *ordered group* is a group endowed with a relation  $>$ , satisfying the following conditions:

1. For any elements  $x$  and  $y$  of the group either  $x > y$ , or  $y > x$ , or  $x = y$ .
2. If  $x > y$  and  $y > z$ , then  $x > z$ .
3. If  $x > y$ , then  $axb > ayb$  for any elements  $a$  and  $b$  of the group.

**Definition 2.** An *ordered ring (field)* is a ring (field) such that:

1. the additive group of the ring (field) is ordered, and
2. for any elements  $a, x, y$  of the ring (field),

$$(a > 0 \text{ and } x > y) \implies (ax > ay \text{ and } xa > ya).$$

**Definition 3.** The *group algebra*  $\mathbb{k}\mathfrak{G}$  of a group  $\mathfrak{G}$  over a field  $\mathbb{k}$  is the algebra whose elements are formal finite linear combinations of elements of  $\mathfrak{G}$  with coefficients in  $\mathbb{k}$ . These sums are multiplied and added in the usual way. A group algebra has the obvious unit  $1e$ , where  $e$  is the identity element of  $\mathfrak{G}$  and  $1$  the unit of  $\mathbb{k}$ .

**Lemma 1.** *If  $\mathbb{k}$  is an ordered field and  $\mathfrak{G}$  an ordered group, then  $\mathbb{k}\mathfrak{G}$  is orderable.*

---

\*Published in *Mat. Sb. (N.S.)*, 1949, Volume 25(67), Number 1, 163–168. Translated from Russian by Victoria Lebed and Arnaud Mortier.

*Proof.* Let  $A$  and  $A'$  be elements of  $\mathbb{k}\mathfrak{G}$  under the conditions of the lemma. Then they can be written as

$$A = \sum_{i=1}^n \alpha_i a_i, \quad A' = \sum_{i=1}^n \alpha'_i a_i,$$

where some of the  $\alpha_i$  and  $\alpha'_i$  might be zero, and  $a_1 > \dots > a_n$ . We set  $A > A'$  if for some  $r \in \{1, \dots, n\}$ ,

$$\alpha_1 = \alpha'_1, \quad \dots, \quad \alpha_{r-1} = \alpha'_{r-1}, \quad \alpha_r > \alpha'_r.$$

It is easy to check that the conditions from Definition 2 hold.  $\square$

We call a *triangular matrix* any matrix, finite or infinite, with zeroes under the main diagonal.

**Lemma 2.** *The set of all triangular matrices with entries in an ordered unital ring, and with every element on the main diagonal positive and invertible, is an orderable group.*

*Proof.* Triangular matrices of the form described in the statement clearly form a group. Let  $X$  and  $Y$  be such matrices. We will call *preceding entries* to a given entry  $x_{ik}$ , those<sup>1</sup>  $x_{nm}$  located to the right of or on the main diagonal, for which

$$\begin{aligned} n - m \leq k - i &\quad \text{when } m < i, \quad \text{and} \\ n - m < k - i &\quad \text{when } m \geq i. \end{aligned}$$

Say that  $X > Y$  if either of the following conditions holds:

- $x_{ii} = y_{ii}$  for  $i = 1, \dots, k - 1$ , and  $x_{kk} > y_{kk}$  for some  $k$ ,
- $x_{ik} > y_{ik}$  for some  $k > i$ , and their preceding entries coincide.

One easily checks that the conditions of Definition 1 are satisfied.  $\square$

**Lemma 3.** *The direct product of two ordered groups is orderable.*

*Proof.* Let  $\mathfrak{A}$  and  $\mathfrak{B}$  be ordered groups. Say that  $(a, b) > (a', b')$  in  $\mathfrak{A} \times \mathfrak{B}$  if either  $a > a'$ , or  $a = a'$  and  $b > b'$ . It is easy to check that the conditions from Definition 1 hold.  $\square$

We denote by  $\mathfrak{M}$  the direct product of two ordered groups  $\mathfrak{A}$  and  $\mathfrak{B}$ . A pair of the form  $(a, e_1)$  where  $e_1$  is the identity of  $\mathfrak{B}$  will be denoted simply by  $a$ , and a pair of the form  $(e, b)$  where  $e$  is the identity of  $\mathfrak{A}$  will be denoted by  $b$ .

---

<sup>1</sup>Translators' note: we believe that there is a mistake here,  $x_{nm}$  should probably be replaced with  $x_{mn}$ .

Consider now the following transcendental triangular matrix:

$$X = \begin{vmatrix} 1 & x_{12} & x_{13} & x_{14} & \cdot & \cdot & \cdot \\ & 1 & x_{23} & x_{24} & \cdot & \cdot & \cdot \\ & & 1 & x_{34} & \cdot & \cdot & \cdot \\ & & & 1 & \cdot & \cdot & \cdot \\ & & & & \cdot & \cdot & \cdot \\ & & & & & \cdot & \cdot \end{vmatrix}$$

We denote by  $\mathfrak{G}$  the free abelian group generated by the entries  $x_{ij}$  of  $X$ . This group is orderable (see [2] and references therein). By Lemma 1, the group algebra  $\mathfrak{K} = \mathbb{Q}\mathfrak{G}$  is orderable, and thus has no zero divisors. The field of fractions  $\text{Frac}(\mathfrak{K})$  of this algebra is also orderable [3]. Consider the group algebra  $\mathfrak{L} = \text{Frac}(\mathfrak{K})\mathfrak{M}$ , where  $\mathfrak{M} = \mathfrak{A} \times \mathfrak{B}$  as above. According to Lemmas 1 and 3, the algebra  $\mathfrak{L}$  is orderable.

**Lemma 4.** *Consider the diagonal matrix*

$$A = \begin{vmatrix} 1 & & & & \\ & a & & & \\ & & 1 & & \\ & & & a & \\ & & & & \cdot \\ & & & & & \cdot \end{vmatrix}$$

where 1 is the unit of  $\mathfrak{L}$  and  $a \in \mathfrak{L}$  is neither 0 nor 1. Then every entry of the matrix  $B = X^{-1}AX$  located to the right of or on the main diagonal is non-zero.

*Proof.* Put  $X^{-1} = (y_{ik})$  and  $B = (b_{ik})$ . Clearly<sup>2</sup>,

$$\begin{aligned} y_{in} &= -x_{in} + \sum_{i < \alpha_1 < n} x_{i\alpha_1} x_{\alpha_1 n} - \sum_{i < \alpha_1 < \alpha_2 < n} x_{i\alpha_1} x_{\alpha_1 \alpha_2} x_{\alpha_2 n} + \cdots + \\ &\quad + (-1)^{n-i} x_{i, i+1} x_{i+1, i+2} \cdots x_{n-1, n} \end{aligned}$$

---

<sup>2</sup> Translators' note: we corrected the last term of the formula given for  $y_{in}$ . Note also that this formula holds only for  $i \neq n$ , as  $y_{ii} = 1$ . As a result, the very last formula of this proof is slightly incorrect when  $i$  is odd, but the main point—that the coefficient of  $b_{ik}$  is not 0—seems to hold true after all.

and

$$b_{ik} = 1(y_{i1}x_{1k} + y_{i3}x_{3k} + \cdots + y_{i,2l+1}x_{2l+1,k}) + \\ a(y_{i2}x_{2k} + y_{i4}x_{4k} + \cdots + y_{i,2r}x_{2r,k}).$$

From this follows:

$$y_{i1}x_{1k} + y_{i3}x_{3k} + \cdots + y_{i,2l+1}x_{2l+1,k} = \\ - \sum x_{in}x_{nk} + \sum \sum_{i < \alpha_1 < n} x_{i\alpha_1}x_{\alpha_1 n}x_{nk} - \sum \sum_{i < \alpha_1 < \alpha_2 < n} x_{i\alpha_1}x_{\alpha_1 \alpha_2}x_{\alpha_2 n}x_{nk} + \cdots,$$

where the external sums are over all odd integers  $n$  between  $i$  and  $k$ . This equality shows that the coefficient of 1 in  $b_{ik}$  is non-zero, and so  $b_{ik} \neq 0$ .  $\square$

**Theorem.** *The free product of two ordered groups can be endowed with a group order whose restriction to each factor is the original order.*

*Proof.* Consider, together with the triangular matrix  $X$  introduced before, the following transcendental triangular matrices:

$$Y = \begin{vmatrix} 1 & y_{12} & y_{13} & y_{14} & \cdot & \cdot & \cdot \\ & 1 & y_{23} & y_{24} & \cdot & \cdot & \cdot \\ & & 1 & y_{34} & \cdot & \cdot & \cdot \\ & & & 1 & \cdot & \cdot & \cdot \\ & & & & \ddots & & \\ & & & & & \ddots & \end{vmatrix},$$

$$U = \begin{vmatrix} u_1 & & & & & \\ & u_2 & & & & \\ & & u_3 & & & \\ & & & \ddots & & \\ & & & & \ddots & & \end{vmatrix}, \quad V = \begin{vmatrix} v_1 & & & & & \\ & v_2 & & & & \\ & & v_3 & & & \\ & & & \ddots & & \\ & & & & \ddots & & \end{vmatrix}.$$

Let  $\mathfrak{A}$  and  $\mathfrak{B}$  be ordered groups. As before, we construct an algebra  $\mathfrak{L} = \text{Frac}(\mathbb{Q}\mathfrak{G})\mathfrak{M}$  with  $\mathfrak{M} = \mathfrak{A} \times \mathfrak{B}$ , where now the free abelian group  $\mathfrak{G}$  is generated by the set of all formal entries not only of  $X$ , but also of  $Y$ ,  $U$ ,

and  $V$ . To every  $a = (a, e_1) \in \mathfrak{M}$  we associate the diagonal matrix

$$\overline{A}_a = \begin{vmatrix} 1 & & & & \\ & a & & & \\ & & 1 & & \\ & & & a & \\ & & & & \ddots \\ & & & & & \ddots \end{vmatrix},$$

and to every  $b = (e, b) \in \mathfrak{M}$  the diagonal matrix

$$\overline{B}_b = \begin{vmatrix} 1 & & & & \\ & b & & & \\ & & 1 & & \\ & & & b & \\ & & & & \ddots \\ & & & & & \ddots \end{vmatrix}.$$

Clearly the two sets of matrices  $\overline{\mathfrak{A}} = \{\overline{A}_a \mid a \in \mathfrak{A}\}$  and  $\overline{\mathfrak{B}} = \{\overline{B}_b \mid b \in \mathfrak{B}\}$  form groups naturally isomorphic to  $\mathfrak{A}$  and  $\mathfrak{B}$  respectively.

Put  $\overline{\overline{\mathfrak{A}}} = U^{-1}X^{-1}\overline{\mathfrak{A}}XU$  and  $\overline{\overline{\mathfrak{B}}} = V^{-1}Y^{-1}\overline{\mathfrak{B}}YV$ . We are going to show that the representations of  $\mathfrak{A}$  and  $\mathfrak{B}$  given by  $a \mapsto \overline{\overline{A}}_a$  and  $b \mapsto \overline{\overline{B}}_b$  induce a faithful representation of the free product  $\mathfrak{A} * \mathfrak{B}$ , that is, given elements of  $\mathfrak{A} * \mathfrak{B}$  of type

$$r_1 = \prod_1^n a_i b_i, \quad r_2 = \left( \prod_1^n a_i b_i \right) a_k, \quad r_3 = b_k \prod_1^n a_i b_i, \quad r_4 = \prod_1^n b_i a_i,$$

the corresponding matrices

$$R_1 = \prod_1^n \overline{\overline{A}}_i \overline{\overline{B}}_i, \quad R_2 = \left( \prod_1^n \overline{\overline{A}}_i \overline{\overline{B}}_i \right) \overline{\overline{A}}_k, \quad R_3 = \overline{\overline{B}}_k \prod_1^n \overline{\overline{A}}_i \overline{\overline{B}}_i, \quad R_4 = \prod_1^n \overline{\overline{B}}_i \overline{\overline{A}}_i$$

are not the identity matrix. We will write down the proof for  $R_1$  only, as the three remaining cases are similar.

Every entry  $\overline{\overline{a}}_{kl}^i$  of the matrix  $\overline{\overline{A}}_i$  is equal to  $u_k^{-1} a'_{kl} u_l$ , where  $a'_{kl}^i$  is an entry of  $A'_i = X^{-1} \overline{A}_i X$ , and  $u_k^{-1}$  and  $u_l$  are diagonal entries of the matrices  $U^{-1}$  and  $U$ . Similarly,  $\overline{\overline{b}}_{kl}^i = v_k^{-1} b'_{kl} v_l$ , where  $b'_{kl}^i$  is an entry of  $B'_i = X^{-1} \overline{B}_i X$ , and  $v_k^{-1}$  and  $v_l$  are diagonal entries of the matrices  $V^{-1}$  and  $V$ .

By Lemma 4, every matrix in the groups  $\mathfrak{A}' = X^{-1} \overline{\mathfrak{A}} X$  and  $\mathfrak{B}' = Y^{-1} \overline{\mathfrak{B}} Y$  different from the identity matrix has only non-zero entries to the right of or

on the main diagonal. The entries of the matrix  $R_1$  are given by

$$r_{ik} = \sum_{i \leq i_2 \leq i_3 \leq \dots \leq i_{2n} \leq k} \bar{a}_{ii_2}^{(1)} \bar{b}_{i_2 i_3}^{(1)} \bar{a}_{i_3 i_4}^{(2)} \bar{b}_{i_4 i_5}^{(2)} \cdots \bar{a}_{i_{2n-1}, i_{2n}}^{(n)} \bar{b}_{i_{2n}, k}^{(n)}.$$

Here  $i \leq k$ . This sum can be regarded as a polynomial in the diagonal entries of  $U$ ,  $V$  and of their inverses. The coefficients of this polynomial are products of entries of the matrices  $A'_1, B'_1, A'_2, B'_2, \dots$ . Observe that no monomial occurs twice in the sum as it is given. Moreover, every coefficient is non-zero, since it is a product of non-zero elements of the algebra  $\mathfrak{L}$ , which has no zero divisors.

Therefore, we have a faithful representation of the free product  $\mathfrak{A} * \mathfrak{B}$ , given by

$$r_i \mapsto R_i.$$

Every diagonal entry of  $R_i$  is either the unit of  $\mathfrak{L}$  or a positive invertible element of  $\mathfrak{L}$  distinct from the unit. It follows then from Lemma 2 that all matrices of all four types  $R_i$  together form an orderable group. Therefore, the free product  $\mathfrak{A} * \mathfrak{B}$  is orderable.  $\square$

The proof presented here for two factors obviously works for any number of factors.

## References

- [1] A. Malcev. On isomorphic matrix representations of infinite groups. *Rec. Math. [Mat. Sbornik] N.S.*, 8 (50):405–422, 1940.
- [2] H. Shimbireva. On the theory of partially ordered groups. *Rec. Math. [Mat. Sbornik] N.S.*, 20(62):145–178, 1947.
- [3] B. L. van der Waerden. *Modern Algebra. Vol. I.* M.–L., 1934.