
Math 990 Hyperbolic Geometry and Topology

Problem Set 1

General notation: A =

(

a b

c d

)

∈ SL(2,R) and fA(z) =
az + b

cz + d
is the corresponding

R
2
+-isometry. dR2

+
(z1, z2) is the hyperbolic distance function in R

2
+, and dD2(w1, w2) is the

hyperbolic distance function in D
2.

1. Show that if z1 = 0 is the origin in D
2 and z2 ∈ D

2, then
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∣
( = arctanh(|z2|) ).

2. Show that for w1 ∈ D
2, the map ϕ : z 7→

z − w1

−w1z + 1
is an isometry of D2 sending w1 to the

origin. [Hint: use our particular isometry ψ : D2 → R
2
+ and show that ψ ◦ϕ◦ψ−1 = fA

for some A ∈ SL(2,R).] Use this, together with the previous problem, to give an
explicit formula for dD2(z1, z2) for all z1, z2 ∈ D

2.

3. Use Prbolem #2 and the map ψ to give a fairly ugly explicit formula for dR2
+
(z1, z2) for

all z1, z2 ∈ R
2
+.

4. Show that if z1, z2 are distinct points in R
2
+, as are w1, w2, and dR2

+
(z1, z2) = dR2

+
(w1, w2),

then there is an A ∈ SL(2,R) with fA(zi) = wi for all i. [Hint: you could brute-force
this, and solve equations, or show that transitivity on point-direction pairs is enough
to guarantee it?]

5. Show that if α1 < α2 < α3 and α′
1 < α′

2 < α′
3 are all in R ∪ {∞} (where we interpret

x < ∞ for all x ∈ R), then there is an A ∈ SL(2,R) with fA(αi) = α′
i
for all i. [Hint:

do this (first) for α1 = 0, α2 = 1 and α3 = ∞. Or: ‘just’ treat it as a system of linear
equations!]

6. The isometry of R2
+ given by ϕ(z) = −z is a ‘reflection’: it fixes the positive imaginary

axis (a geodesic) pointwise and swaps the two sides of the axis. Call anything conjugate
to this a reflection (ψ = fA◦ϕ◦f

−1

A
fixes pointwise (check!) the image of the imaginary

axis under fA). Show that every elliptic or loxodromic isometry of R2
+ is a composition

of two reflections. Is this also true for a parabolic isometry?

7. Show that the ‘AAA Congruence Theorem’ for triangles holds when some of the vertices
of the triangle are ideal vertices. [Problem #5 is basically the all-ideal-vertices case.
When one of them isn’t ideal, move it to the origin!]

8. Generalize the ‘area equals angle defect’ result to all polygons. [What is the correct
notion of ‘angle defect’?]. Use this to compute the hyperbolic area of the all-right-
angle hexagon, and then compute the hyperbolic area of a closed orientable surface of
genus g ≥ 2.


