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§1 Introduction

Let M be a 3-manifold with a regular cell decomposition {B3
k}. In [B], the first author

shows:

If M contains an essential lamination L0, then there is an essential lamination
L in M , which is in normal form with respect to the cell decomposition {B3

k}.

In the same paper, by using the result above, he proposes a procedure for determining
whether a given manifold contains an essential lamination or not. However the procedure
does not work, at present, since (1) there is not a practical algorithm for determining
whether a given branched surface is essential or not, and (2) there does not exist an
algorithm for determining whether a given branched surface fully carries a lamination or
not.

The purpose of this paper is to try to carry out the procedure to the exteriors of
links given by diagrams, by using various techniques in knot and link theory, and 3-
dimensional topology. In fact, we give a definition of standard position (with respect
to a diagram of a given link) for branched surfaces contained in the exterior of links in
section 2, which is a natural generalization of standard position of closed incompressible
surfaces defined by W. Menasco [M1]. In section 3, we apply the result of [B], to show
that any essential lamination in a link exterior can be deformed into one carried by
an essential branched surface in standard position with respect to a given diagram.
In section 4, we study about branched surfaces in standard positions with respect to
alternating diagrams, and give a sufficient condition for the branched surfaces to be
incompressible and Reebless, and possess indecomposable exteriors (for the definitions of
these terms, see section 2). In [O], U.Oertel studied some fundamental properties of affine
laminations in 3-manifolds. In section 5, we give a necessary and sufficient condition for
a given branched surface in standard position to fully carry affine laminations, by using
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admissible weights on train tracks obtained by the branched surface. We note that the
results of sections 4 and 5 correspond to the above steps (1) and (2). They are not
necessary and sufficient conditions. Conceivably, the conditions in section 4 are very
far from necessary condition (see Example 6.2 of section 6), for branched surfaces to be
incompressible and Reebless. However, we see that they are efficient enough to give a
non-trivial example of a lamination with non-trivial holonomy in the figure eight knot
complement.

§2 Preliminaries

For the definition of lamination, we refer to Chapter I of [MS]. For the definitions of
essential lamination, and terms concerned with essential laminations, we refer to section 1
of [GO].

The notion of branched surfaces is defined in [FO]. Figure 2.1 shows a local model for
a branched surface B and its corresponding fibred neighborhood N(B) in a 3-manifold
M . Each branch locus of a branched surface B is a circle or an arc properly immersed
in M , and these branch loci are in general position in B, that is, intersecting each other
transversely. Note that B has smooth structure near branch loci. There is a projection
map N(B) → B which collapses every I-fiber of the I-bundle N(B) to a point of B.
The boundary ∂N(B) is the union of three compact subsurfaces ∂hN(B), ∂vN(B) and
N(B) ∩ ∂M , which meet only in their common boundary points; every I-fiber of the
I-bundle N(B) meets ∂hN(B) transversely at its endpoints, while each I-fiber of N(B)
either is disjoint from ∂vN(B) or intersects ∂vN(B) in a union of at most two closed
intervals in the interior of the fiber. Note that vertical boundary ∂vN(B) is also an
I-bundle and is collapsed into the union of branch loci of B by the projection map.

Figure 2.1

We recall the definition of essential branched surfaces in [GO]. A disk D properly
embedded in N(B) is called a disk of contact if D is transverse to the fibers and ∂D ⊂
int ∂vN(B). A disk D properly embedded in cl(M − N(B)) is called a monogon if
α = ∂D ∩ ∂vN(B) is an I-fiber of ∂vN(B) and if ∂D − α ⊂ ∂hN(B). A Reeb branched
surface is a union of a torus T bounding a solid torus V and a meridian disk D of V

which are glued at the branched locus T ∩ D = ∂D so that ∂vN(T ∪ D) ⊂ intV . A
branched surface B′ is carried by B if B′ ⊂ N(B), and B′ is transverse to the fibers of
N(B). A lamination L is carried by B if L is embedded in N(B) and is transverse to
the fibers. It is fully carried by B if L intersects every fiber of N(B). A lamination LR
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is a Reeb lamination if there is a solid torus V with a Reeb foliation F in M such that
LR is a union of leaves of F containing the toral leaf and at least one other.

A closed branched surface B is called essential if it satisfies the five conditions below.

(1) B has no disk of contact.
(2) No component of ∂hN(B) is a sphere, ∂hN(B) is incompressible in cl(M−N(B))

and there is no monogon in cl(M −N(B))
(3) cl(M −N(B)) is irreducible and ∂M is incompressible in cl(M −N(B)).
(4) B is Reebless i.e., B does not carry a Reeb branched surface.
(5) B fully carries a lamination.

Remarks.

(1) Suppose that M is an orientable, irreducible 3-manifold. Then a branched surface
satisfying (1), (2) are called incompressible ([FO]).

(2) We say that the exterior of a fibered neighborhood of a branched surface is indecom-
posable if the branched surface satisfies (3)(see [GO, Remark 1.3]) .

(3) We will show in Appendix A that B satisfies the condition (4) above if and only if B
does not carry a Reeb lamination.

It was shown by D. Gabai and U. Oertel that a lamination is essential if and only if
there is an essential branched surface which fully carries the lamination ([GO, Proposition
4.5]). It is shown in [GO, Theorem 6.1] that if a compact orientable 3-manifold contains
an essential lamination, then its universal cover is homeomorphic to R

3. Y-Q. Wu showed
that essential laminations in the exteriors of knots remain essential after majority of
Dehn surgeries on the knots ([W]). Hence, to find an essential branched surface in a knot
exterior is a very effective tactics on the study on Dehn surgeries on the knot. See, for
example, [B], [B3], [DR], [Hay] and [HK].

Let L be a link in S3, S the projection sphere, and E the diagram of L on S. We
position L so that it lies on S except near crossings of E, where L lies on a “bubble”
as shown in Figure 2.2. The inside of each bubble is called a crossing ball. Let S+

(resp. S−) be S with each disk of S inside a bubble replaced by the upper (resp. lower)
hemisphere of that bubble. Let S0 be S with interiors of the crossing balls are removed,
i.e., S0 = S+ ∩ S−. Let B+ (B− resp.) be the ball in S3 bounded by S+ (S− resp.)
and lying above S+ (below S− resp.). A region of the diagram E is the closure of a
component of S0 − E.

Figure 2.2
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Let F be a closed 2-manifold. A train track τ is a graph embedded in F such that each
edge is smooth and has the same differential at each vertex. In this paper, we treat train
tracks whose vertices have valency one or three. Let B′ and B′′ be branched surfaces in
a 3-manifold M . We say that B′′ is a pinching of B′, or B′ is a splitting of B′′, if after
an isotopy of B′ and B′′ there are neighborhoods N(B′), N(B′′) and an I-bundle J over
a union of finitely many compact surfaces in M such that N(B′′) = N(B′) ∪ J , where
J ∩N(B′) ⊂ ∂J ∩ ∂N(B′), ∂hJ ∩N(B′) = ∂hJ ⊂ ∂hN(B′) and ∂vJ ∩N(B′) is empty
or consists of finitely many components which are unions of fibers of ∂vN(B′).

Let B be a closed branched surface in the exterior E(L) = cl(S3 −N(L)) of the link
L. We say that B is in standard position with respect to the diagram E if B satisfies the
next six conditions.

(1) B intersects each crossing ball in “saddle-shaped” disks as shown in Figure 2.2.
In particular, crossing balls do not meet branch loci of B.

(2) B intersects S+ (S− resp.) transversely. Hence B ∩ S+ (B ∩ S− resp.) are train
tracks, say τ+ (τ− resp.).

(3) Each branch locus intersects S, i.e., no branch locus is entirely contained in B±.
(4) There exists a union of finite number of mutually disjoint smooth disks D+

1 ∪· · ·∪
D+

m (D−
1 ∪ · · · ∪D−

n resp.) properly embedded in B+ (B− resp.) and carried by
B ∩B+ (B ∩B− resp.) such that

(4-1) the branched surface B ∩B+ (B ∩B− resp.) is a pinching of D+
1 ∪ · · · ∪D+

m

(D−
1 ∪ · · · ∪D−

n resp.), where no pinching occurs between subsurfaces of a single
component of D+

1 , . . . , D+
m (D−

1 , . . . , D−
n resp.).

(4-2) The boundary of each D+
i (D−

j resp.) meets a bubble.

(4-3) The boundary of each D+
i (D−

j resp.) does not meet the same side of the
bubble more than once.

(5) No arc component of (branch loci) ∩B± has its both endpoints in a region.

We call the system of disks in B+ (B− resp.) of the condition (4) of the above definition
a system of generating disks for B ∩B+ (B ∩B− resp.).

Remark on Condition (4-1). We note that no pinching occurs between subsurfaces of a
single component of D+

1 ∪ · · · ∪D+
m (D−

1 ∪ · · · ∪D−
n resp.) if and only if each D+

i (D−
j

resp.) is mapped to an embedded disk by the projection map N(B ∩ B+) → B ∩ B+

(N(B ∩ B−) → B ∩ B− resp.), i.e., each fiber of N(B ∩ B+) (N(B ∩ B−) resp.) meets
each D+

i (D−
j resp.) in at most one point.

In fact, ‘if’ part of this assertion is clear. We can prove ‘only if’ part as follows. Since
the argument is the same, we prove this only for D+

1 ∪· · ·∪D+
m. Suppose that there exists
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a fiber, say J , of N(B ∩ B+) intersecting D+
i more than once. Let J ′ be a subinterval

of J such that J ′ ∩ D+
i = ∂J ′. Suppose D+

k ∩ J ′ �= ∅ (k �= i). Then we note that J ′

intersects D+
i in more than one points, since D+

i , D+
k are mutually disjoint disks properly

embedded in the 3-ball B+. Hence by retaking D+
i if necessary, we may suppose that

J ∩ (D+
1 ∪ · · · ∪ D+

m) = J ∩ D+
i = ∂J . This shows that a pinching occurs between

subsurfaces in D+
i .

Remark on Condition (4).

We note that there is a branched surface B properly embedded in a ball such that B

is a union of smooth disks and ∂B contains a smooth circle bounding no smooth disk in
B. Here is an example:

We will construct B as a union of three smooth disks D1, D2 and D3 properly embed-
ded in a ball. We place these three disks to be parallel in the ball so that D2 is between
D1 and D3. We glue D1 and D2 in a half disk, then the union D1 ∪ D2 is a branched
surface with a single branch arc α. We glue D2 and D3 in a half disk, then the union
D2 ∪D3 is a branched surface with a single branch arc β. Here we perform the pinching
operations so that α and β intersect in two points on D2 and that D1 ∩D2 ∩D3 consists
of two disks. Then the boundary of the branched surface D1 ∪D2 ∪D3 is a union of two
smooth circles glued in two subarcs. Then this boundary contains four smooth circles.
But one of them does not bound a smooth disk in the branched surface.

Figure 2.3

Furthermore, we can construct an example where no pair of subarcs of branch loci
intersect each other more than one point. In the above branched surface, we take an arc
γ in (D2 ∩ D3) − D1 connecting the arcs β and (∂D2) ∩ (∂D3). Let N(γ) be a regular
neighborhood of γ in the half disk D2 ∩ D3. We split D2 ∪ D3 along the band N(γ).
Then the branch arc β is deformed into two arcs each of which intersects α in a single
point. But the boundary of D1 ∪D2 ∪D3 still contains a smooth circle which does not
bound a smooth disk.

This definition of standard position is a mimicry of that for closed surfaces in [M1].
However, we do not know whether every closed essential branched surface can be isotoped
to be in standard position or not, while it can be after adequate splitting operations when
E is connected (cf. Theorem 3.1).

A disk ∆ embedded in the interior of a surface is a 0-gon if ∂∆ is a smooth circle, and
it is a monogon if ∂∆ is smooth except one corner point.
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Lemma 2.1. Let E, B, τ± be as above. Suppose that B is in a standard position and
that E is connected. Let ∆ be a disk entirely contained in a region of E so that ∂∆ ⊂ τ±.
Then ∆ is neither a 0-gon nor a monogon.

Proof. Since the argument is the same, we prove this only for τ+. Assume that there
exists such a 0-gon or monogon, say ∆. An elementary calculation on Euler characteristics
shows that the closure of a component of ∆ − B, say ∆′ is a 0-gon, monogon or bigon.
Let D′ be the closure of the component of S+ −N(B) contained in ∆′. Let Q1, . . . , Q2m

be duplicated parallel copies of D+
1 , . . . , D+

m in N(B ∩B+) such that (Q1 ∪ · · · ∪Q2m) ⊃
∂hN(B∩B+), where D+

1 , . . . , D+
m are disks in the definition of standard position. Suppose

Qk ∩ ∂D′ �= ∅. If ∆′ is a 0-gon, then we have ∂D+
i = ∂∆′ for the disk D+

i parallel to
Qk, contradicting the condition (4-2) of the definition of standard position. If ∆′ is a
monogon, then we see that a pinching occurs between subsurfaces of the disk D+

i parallel
to Qk, contradicting the condition (4-1) of the definition of standard position. �

§3 Deforming an essential lamination to be in standard position

The goal of this section is the next theorem.

Theorem 3.1. Let L be a link in the 3-sphere, E a diagram of L and E(L) the exterior
of L. Suppose that E is connected and that E(L) contains an essential lamination L0

without boundary. Then E(L) contains an essential lamination L without boundary such
that it is fully carried by a closed essential branched surface B which is in standard
position with respect to E.

Moreover, we can take the lamination L so that L also remains essential in M , where
M is any 3-manifold obtained by a Dehn surgery along the link L and containing L0 as
an essential lamination. In particular, if the lamination L0 does not contain a toral leaf
parallel to a component of the boundary ∂E(L), then we can take L not to do.

First of all, we note that this theorem is based mainly on the result by the first
author in [B]. A cell decomposition C of a 3-manifold is called regular if every k-cell is a
polyhedron, and every face of every k-cell is glued to a (k−1)-cell by a homeomorphism.
Let Z be a 3-cell of a regular cell decomposition C of a 3-manifold, and C∂Z the regular
cell decomposition of the 2-sphere ∂Z induced from C. Note that C∂Z may have two or
more cells which are copies of the same cell of C. A disk D properly embedded in Z is said
to be essential if ∂D does intersect 1-skeleton of C∂Z transversely at one or more point.
An essential disk D in Z is called a normal disk if ∂D intersects every 1-cell of C∂Z at no
more than one point. Note that a normal disk may intersect a 1-cell of C in two or more
points. Two normal disks in a 3-cell are in the same type if their boundaries cobound
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an annulus which is divided into rectangles by the 1-skeleton. A lamination L ⊂ M is
in normal form with respect to the regular cell decomposition C if it is transverse to the
decomposition, and it intersects the 3-cells in normal disks. A regular cell decomposition
C of M is said to be nice in this paper if it has no 3-cell Z such that the induced cell
decomposition C∂Z contains a pair of 2-cells sharing one or more 1-cells and amalgamated
into a 2-cell of C.

Then the following is known.

Theorem in [B]. If M is a compact irreducible 3-manifold with a regular cell decompo-
sition C, and M contains an essential lamination L0 without boundary, then there is an
essential lamination L without boundary in M which is in normal form with respect to
C.

N.B. We give a warning that the regular cell decomposition C need to be nice in the above
theorem because the ∂-compressing operation described in [B], page 4 below Figure 2
cannot be pursued if C is not nice.

When every 3-cell of the cell decomposition C is embedded in M , the same arguments
as in [B4] will show the above theorem. Hence it is sufficient to read [B4] and the
arguments below for understanding of Theorem 3.1.

We note that Theorem in [B] can be strengthened as in the following form.

Addendum to Theorem in [B]. Let W be a compact 3-manifold containing M as a
submanifold so that no component of cl(W −M) contains more than one component of
∂M . Suppose that the original lamination L0 is essential in W . Then we can take the
resultant lamination L to be essential also in W . We can take L to be the same one for
all such 3-manifolds W .

Proof. We assume good familiarity of the reader with [B]. We take a regular cell de-
composition C′ of W such that the restriction of C′ on M is exactly the regular cell
decomposition C of M . Then we apply the argument of [B] to L0 and C′ to obtain an
essential lamination L which is in normal form with respect to C′. It is easy to see that
the deformations for obtaining L from L0 stay in M . In fact, L can intersect a 3-cell C of
C′ only if L0 intersects C. We slightly change the operations described between Lemma
and Proposition in section 4 in [B4] which is cited at right after Figure 9 in section 4 in
[B]. There we discard certain sublaminations containing compressible toral leaves, but
here we discard sublaminations containing separating toral leaves. (Note that we may
assume the original lamination consists of non-compact leaves, and hence the toral leaves
are split-and-paste leaves.) Since every component of cl(W −M) contains no more than
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one component of ∂M , a torus in M is separating if and only if it is separating in W .
Hence we can obtain the essential lamination L also by applying the same arguments for
L0 and C as for L0 and C′. Thus we can see that L is essential also in M . �

We say that a branched surface B is in a normal form with respect to the regular cell
decomposition C if

(1) The branch loci are disjoint from the 1-skeleton,
(2) B is transverse to C,
(3) no branch locus is entirely contained in a 3-cell,
(4) B intersects every 3-cell in a pinching of the union of zero or more mutually

disjoint smooth normal disks, where no pinching occurs between subsurfaces of a
single disk,

(5) no arc of (a branch locus) ∩ (a 3-cell) has its both endpoints in a 2-cell.

Lemma 3.2. Let L be an essential lamination without boundary in a normal form with
respect to a regular cell decomposition C of a 3-manifold M . Then L is fully carried by
a closed essential normal branched surface.

Proof. First, we split leaves of L containing the highest or lowest normal disk of every
type in every 3-cell (see lines 4–5 in the proof of Proposition 4.5 in [GO]). Note that the
number of such disks is finite, and hence the number of such leaves is finite. We form
a branched surface neighborhood N as below. Let X be an arbitrary 3-cell of C. For
each type of normal disks in L ∩X, we take a ball in X of the shape (disk)×I between
the highest disk and the lowest disk of this type. Note that every normal disk type
contains at least two disks because of the splitting. Then we take a branched surface
neighborhood N ′ as the union of these balls over all the normal disk types in L∩X and
over all the 3-cells X. Note that ∂hN

′ ⊂ L. Let U be the open I-bundle N ′ − L. As
in the proof of Proposition 4.5 in [GO], we L-split N ′ by removing all components of U

which are bundles over compact surfaces. Let N be the resulting I-bundle. Let B be
the branched surface obtained by collapsing the interval fibers of N to points. (We need
to perturb vertical boundary of N so that the branch loci of B is in general position.)
Then the obtained branched surface B satisfies the conditions (1),(2),(3) and (5) of the
definition of essential branched surfaces by the argument in lines 11–18 in the proof of
Proposition 4.5 in [GO]. Hence by Lemma 4.3 and its proof in [GO] there is an essential
branched surface B′ which is obtained from B by applying a sequence of splittings, and
fully carries the lamination L. (However, we give some remarks on the proof of Lemma
4.3 in [GO] right after this proof of Lemma 3.2.) Note that B′ intersects every 3-cell in a
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union of pinched normal disks. We can slightly perturb branch loci of B′ to be transverse
to the 2-skeleton of the cell decomposition C.

Suppose that a branch locus c is contained in a 3-cell. Then c is contained in two
normal disks D1 and D2. Let Qi be the subdisk of Di bounded by c for i = 1 and 2.
We can take c so that Qi contains no branch locus entirely for i = 1 and 2. Note that
Q1 ∩ Q2 = ∂Q1 = ∂Q2 since the components of U , which are I-bundles over compact
surfaces, are removed. Then the sphere Q1 ∪Q2 bounds a ball Z in the 3-cell such that
Z ∩ B′ = Q1 ∪ Q2. We can perform a pinching operation on B′ along the ball Z. This
eliminates the branch locus c. We repeat such operations until B′ has no branch locus
entirely contained in a 3-cell.

Suppose that a branch locus intersects in an arc α with a 3-cell so that α has its both
endpoints in a 2-cell. Then there are two normal disks P1 and P2 containing α, and
subarcs of the edges β1 and β2 of P1 and P2 connecting the two points ∂α. The loops
α ∪ β1 and α ∪ β2 bound disks R1 and R2 in P1 and P2 respectively. We can take α to
be outermost, that is, so that Ri does not contain such a subarc of branch locus entirely
for i = 1 and 2. If R1 = R2, then we can split B′ along R1 = R2 to push α out of the
3-cell. If R1 �= R2, then the loop β1 ∪ β2 bounds a disk R in a 2-cell. Then the sphere
R ∪ R1 ∪ R2 bounds a ball Y in the 3-cell. We can perform a pinching operation on
B′ along this ball Y to push α out of the 3-cell Repeating such operations, we obtain a
branched surface in normal form with respect to C. Note that B′ is still essential after
such splitting operations and pinching operations. Since the number of the points (the
branch loci of B) ∩ (union of the 2-cells in C) is finite, we see that the sequence of these
procedures terminates in finitely many steps to give a branched surface B∗ satisfying the
conditions (1)–(5) of the definition of a normal form. �

Remark on the proof of Lemma 4.3 in [GO]. In the second sentence of the second para-
graph of the proof of Lemma 4.3 in [GO], it is claimed that N̂(B) intersects T twice.
However, the authors of this paper took a considerable time to understand this fact. We
will give a detailed proof of this fact in Fact 3 in Appendix B.

In the first sentence of the third paragraph of the proof, we take a sequence of splittings
of B whose “inverse limit” is the lamination λ. However, there may not be such a sequence
of splittings of B. We need to split and isotope λ so that ∂hN(B) ⊂ λ, and need to
extend λ by adding interstitial foliations transverse to the open I-bundle structure in the
interstitial open I-bundles disjoint from ∂vN(B). Then we can take such a sequence of
splittings of B.

In the second sentence of the third paragraph of the proof, we take a subset K of
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M(B) representing projective transverse measures on λ. The subset K may consist of a
single element, the trivial measure 0 on λ. However, it does not matter to the arguments
there.

In the fourth sentence of the third paragraph of the proof, the equation ∩Ki = K

is given. However, the authors of this paper cannot tell why this equation holds. This
equation leads to the fact that there is a branched surface Bn in the sequence of splittings
such that Bn carries none of the tori Ti. In the rest of this remark we give another proof
of the fact that there is a finite sequence of splittings giving a Reebless branched surface.

Suppose for a contradiction that for every integer i the branched surface Bi carries
the same torus T which is compressible in M . We first show that T is isotopic to a
leaf of λ by a fiber preserving isotopy in the I-bundle N(B). Let J be an I-fiber of
N(B) intersecting T . Since the union ∪λ of the leaves of λ is a closed subset of M ,
J ′ = J ∩ (∪λ) is a closed subset of J . Hence an arcwise connected component of J ′ is a
point or a subinterval in J . Thus an arcwise connected component of ∪λ is a surface or
an I-bundle. The torus T is contained in ∪λ = ∩∞

i=0N(Bi). If T is contained in a surface
component of ∪λ, then T is equal to the surface, and we are done. If T is contained in
an I-bundle component W of ∪λ, then we can isotope T in W so that T ⊂ ∂W by a
fiber preserving isotopy. Since ∂W is a leaf of λ, it implies that T is isotopic to a leaf of
λ in the I-bundle N(B) by a fiber preserving isotopy.

By adding parallel leaves, we can assume that the toral leaf T of λ is contained in
IntN(B). We cut the branched surface neighborhood N(B) along T and collapsing the
I-fibres to points, to obtain a branched surface B′. Let D be a compressing disk of T .
We isotope D near ∂D keeping that ∂D ⊂ T so that ∂D is transverse to the branch
loci of B′, and isotope D fixing ∂D so that D is transverse to B′. Then B′ ∩ D is a
train track τ containing the boundary loop ∂D. Since B′ does not admit a monogon, τ
does not have a monogon face in D. Hence we can see that τ have a 0-gon face Q in
D by an easy calculation on Euler characteristic of D. Set Q′ = Q ∩ (M − IntN(B)).
Then the circle ∂Q′ bounds a disk Q′′ on ∂hN(B) because ∂hN(B) is incompressible.
Let F be the thickening of λ in N(B). By the Reeb stability theorem ([Lemma 2.2,
GO]) and by the condition that λ does not have a vanishing cycle, F contains a product
foliation Q′′ × [0, 1], where Q′′ × {0} = Q′′ and Q′′ × {1} is incident to ∂hN(B). We
split B by deleting the interstitial open I-bundle over cl(Q′′ × {1} − ∂hN(B)). Let B′′

be the branched surface obtained by the above splitting. Let Q′′′ be the disk bounded
by ∂Q′′ × {1} on the compressing disk D. Then we can retake D by replacing Q′′′ with
Q′′ × {1} and isotoping slightly off of the split N(B′′). This operation decreases either
the number of the components of τ or the number of the branched points of τ . Repeating
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such operations, we can retake D so that B∗∩D = τ = ∂D, for some branched surface B∗

which is obtained from B by splitting operations with respect to λ. Similar arguments
as above show that D intersects F in parallel circles which bound parallel disks in F .
This implies that ∂D is not essential in the torus T , which is a contradiction.

Proof of Theorem 3.1. It is well known that there is a nice regular cell decomposition
C of E(L) induced from the connected link diagram E. (See, for example, [M0] or [We,
chapter 2]). That is, let F be the union of disks S0 − Int N(L) and twisted rectangles,
two intersecting in a polar axis in each crossing ball. (Note that F is the union of the
white spanning surface and the black spanning surface.) Then F divides the exterior
E(L) into two 3-cells. The 1-cells of C are the polar axes and the arcs of ∂F ∩N(L).

Then there is an essential lamination L in E(L) which is carried by an essential
branched surface in a normal form with respect to C by Theorem in [B] and Lemma
3.2. It is easy to check that it satisfies the conditions of standard position in section 2
(in fact, the conditions (1)–(5) of the definition of normal branched surface respectively
correspond to the conditions (1)–(5) of the definition of standard position).

Moreover, if L0 is essential in some 3-manifold M obtained by a Dehn filling, then we
can take L to be also essential in M by Addendum to Theorem in [B].

When L0 is inessential in all 3-manifolds obtained by a Dehn filling along a boundary
component T , L0 contains a toral leaf parallel to T by Theorems 1 and 2 in [W]. Hence,
if L0 does not contain a toral leaf parallel to a boundary component, then L0 is essential
in some 3-manifold M obtained by a Dehn filling. Then by the previous paragraph,
the lamination L is essential in M . Thus L does not contain a toral leaf parallel to a
boundary component of ∂E(L). �

§4 A method for examining the essentiality of branched surfaces

Let L, S, E, S±, S0, τ± be as in section 2. In this section, we suppose that L is an
alternating link, and E is an alternating diagram which is reduced to have no nugatory
crossing as in Figure 4.1.

Figure 4.1

By Menasco [M1], if the link L is non-split and prime, then the diagram E is con-
nected and prime, that is, S contains no embedded circle meeting E twice transversely
and bounding no disk intersecting E in a simple arc. He also showed that closed incom-
pressible surfaces in complements of alternating links are isotoped to be in “standard
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position” with respect to E in [M1], and claimed that closed surfaces in standard posi-
tion are incompressible under certain conditions in [M2]. C. Delman and R. Roberts con-
structed essential laminations in the 3-manifolds obtained by non-trivial Dehn surgery on
alternating knots in S3 other than (2, p)-torus knots in [DR]. As a corollary they showed
that all alternating knots have property P . The essential laminations they constructed
meet the attached solid tori of the surgeries. However, it is still unknown whether there
exist essential laminations without boundary in alternating knot complements other than
(2, p)-torus knots which survive all non-trivial Dehn surgeries, i.e., are also essential after
all non-trivial Dehn surgeries.

In this section, we study on essential laminations without boundary, and closed
branched surfaces in complements of alternating links. We first show that under cer-
tain conditions a branched surface in standard position with respect to E satisfies the
conditions (1)-(3) of the definition of essential branched surfaces (Theorem 4.1). We
note that in Appendix B, we show some (known) methods for proving non-existence of
disks of contact and Reeb branched surfaces for general branched surfaces in 3-manifolds.
Recall that a train track τ is a graph imbedded in a surface. In this section, we treat
train tracks with valency three at each vertex. Note that τ has a certain kind of smooth
structure as follows. Let v be a vertex of τ and e, f, g the three edges incident to v. Then
two unions of two edges, say e ∪ f and e ∪ g are smooth arc, and the other union f ∪ g

is not smooth. We say that v has the smooth valency equal to 2 along e, and smooth
valencies of v along f and g are both 1.

We return to our situation. Let B be a branched surface in the exterior E(L) of L.
Suppose B is in standard position with respect to E with a system of generating disks
D+

1 , . . . , D+
m (D−

1 , . . . , D−
n resp.) for B ∩ B+ (B ∩ B− resp.). Let Λ be the union of the

branch loci of B.

We say that B is nice if it satisfies the six conditions below.

(1) τ+ and τ− are both connected.
(2) No smooth circle of the train track τ+ (τ− resp.) bounding a disk D+

i (D−
j resp.)

of a system of generating disks for B ∩B+ (B ∩B− resp.) meets the same region
of E more than once.

(3) There is no such pattern as shown in Figure 4.2. In Figure 4.2, γ is an arc of
(B − Λ) ∩ S0 in a region R. There is a very small arrow v tangent to R incident
and normal to γ. Let α and β be the smooth circles in τ+ and τ− respectively
such that γ ⊂ (α ∩ β) where they are the innermost smooth circles containing γ

in the direction of v in τ+ and τ− respectively. Let R+ and R− be intersections
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of R and the innermost disks bounded by α and β on S+ and S− respectively.
There is a common bubble X meeting both R+ and R−, and α and β miss the
arc X ∩R. Let R1 and R2 are regions of E adjacent to R around X. The circle
α intersects R1 and the circle β intersects R2. The arrangement of R, R1, R2

and the overstrand at X is as in Figure 4.2 (or its mirror image), that is, the
component of L ∩ S0 between R and R1 (resp. R and R2) connects with the
understrand (resp. overstrand) of X.

(4) No region of E contains an edge e of τ+ ∩ τ− such that smooth valencies at the
two endpoints of e along e are both 2. See Figure 4.3.

(5) There is no such pattern as shown in Figure 4.4. There, X is a bubble, and
R1, R2, R3 are regions of E appearing in this order around X. There are two
edges of τ+, say α ⊂ (R1 ∪X ∪R2), and of τ−, say β ⊂ (R2 ∪X ∪R3) such that
α ∩R2 = β ∩R2 and each of α and β meets X just once. Along the edges α and
β their endpoints have smooth valencies 2.

(6) There is no such pattern as shown in Figure 4.5. In Figure 4.5, X1, · · · , Xn are
bubbles, and R1, · · · , R2n+1 are regions of E possibly Xi = Xj (resp. Ri = Rj)
for some i and j with |i − j| ≥ 2. The regions R2i−1, R2i and R2i+1 appears
in this order around Xi as in Figure 4.5, where 1 ≤ i ≤ n. In case n is odd, it
is as in Figure 4.5(1). That is, there are edges of τ+, say α1 ⊂ (R1 ∪ X1 ∪ R2)
and αi ⊂ (R4i−4 ∪ X2i−2 ∪ R4i−3 ∪ X2i−1 ∪ R4i−2), where 2 ≤ i ≤ n+1

2 , and
of τ−, say βj ⊂ (R4j−2 ∪ X2j−1 ∪ R4j−1 ∪ X2j ∪ R4j), where 1 ≤ j ≤ n−1

2 ,
and βn+1

2
⊂ (R2n ∪ Xn ∪ R2n+1) such that αi ∩ R4i−2 = βi ∩ R4i−2 and that

αi+1 ∩ R4i = βi ∩ R4i. Along the edges αi and βj , their endpoints have smooth
valencies 2. In case n is even, it is as in Figure 4.5(2). That is, there are edges
of τ+, say α1 ⊂ (R1 ∪X1 ∪ R2), αi ⊂ (R4i−4 ∪X2i−2 ∪ R4i−3 ∪X2i−1 ∪ R4i−2),
where 2 ≤ i ≤ n

2 , and αn+2
2

⊂ (R2n ∪Xn ∪R2n+1), and of τ−, say βj ⊂ (R4j−2 ∪
X2j−1 ∪R4j−1 ∪X2j ∪R4j), where 1 ≤ j ≤ n

2 , such that αi ∩R4i−2 = βi ∩R4i−2

and that αi+1 ∩R4i = βi ∩R4i. Along the edges αi and βj , their endpoints have
smooth valencies 2. We also admit the patterns where edges of τ+(resp. τ−) play
the role of τ−(resp. τ+) in Figure 4.5.

Figures 4.2, 4.3, 4.4 and 4.5

Theorem 4.1. Let L be an alternating link in S3, S the projection 2-sphere, E a reduced
connected prime alternating diagram of L on S. Let B be a branched surface without
boundary in standard position with respect to E. Then no component of ∂hN(B) is
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a sphere, M − Int N(B) is irreducible and ∂M is incompressible in M − Int N(B) .
Furthermore, if B is nice, then B has no disk of contact, ∂hN(B) is incompressible in
M−Int N(B) and there is no monogon in M−Int N(B) . Hence if B is nice, B satisfies
the condition (1)-(3) of the definition of essential branched surfaces.

Before proving Theorem 4.1, we prepare three lemmas which are valid for branched
surfaces in standard position with respect to general (not necessarily alternating) dia-
grams E.

Recall that B is a branched surface in the exterior E(L) of L, where B is in a standard
position with respect to E with a system of generating disks D+

1 , . . . , D+
m (D−

1 , . . . , D−
n

resp.) for B ∩ B+ (B ∩ B− resp.). In the following, we suppose that ∂hN(B) ∩ B± =
∂hN(B ∩B±) and ∂vN(B) ∩B± = ∂vN(B ∩B±). Let E(L ∪B) = cl(E(L) −N(B))

Lemma 4.2. Each component of E(L ∪B) ∩B± is a 3-ball.

Proof. Since the argument is the same, we prove this only for E(L ∪B) ∩B+. We split
B ∩ B+ into mutually disjoint smooth disks D+

1 ∪ · · · ∪ D+
m. Each component of the

exterior of these disks is a 3-ball. If we pinch these disks with a connected I-bundle such
that no component of the resultant branch locus is a closed curve contained in B ∩B+,
then the exterior of the obtained branched surface is the union of 3-balls. Since B ∩B+

is obtained by repeating pinchings as above, the lemma follows. �

Lemma 4.3. ∂hN(B) ∩B± is a disjoint union of disks.

Proof. Since the argument is the same, we prove this only for ∂hN(B) ∩ B+. Suppose,
for a contradiction, that there is a non-disk component of ∂hN(B)∩B+. We take a loop,
say C, on the component of ∂hN(B) ∩B+ which is disjoint from Λ and does not bound
a disk on the component. Let Q1, . . . , Q2m be duplicated parallel copies of D+

1 , . . . , D+
m

in N(B ∩ B+) such that ∂hN(B ∩ B+) ⊂ Q1 ∪ · · · ∪ Q2m. Let Qk be the disk such
that Qk ⊃ C. Then C bounds a disk, say D in Qk. Since C does not bound a disk in
∂hN(B ∩B+), we see that there is an annulus component of ∂vN(B ∩B+), say A, such
that a component of ∂A is contained in C. However this shows that there is a component
of Λ contained in D, which contradicts the condition (3) of the definition of standard
position. �

Lemma 4.4. If there is a disk D properly embedded in E(L∪B)∩B+ (E(L∪B)∩B−

resp.) disjoint from ∂vN(B) such that ∂D is a union of two subarcs say ξ1 ⊂ ∂hN(B)∩
B+ (ξ1 ⊂ ∂hN(B) ∩ B− resp.) and ξ2 ⊂ (S+ − L) (ξ2 ⊂ (S− − L) resp.). Then we can
move D+

1 ∪ · · · ∪ D+
m (D−

1 ∪ · · · ∪ D−
n resp.) by an isotopy in N(B ∩ B+) (N(B ∩ B−)
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resp.) so that there is a component of D+
1 ∪ · · · ∪ D+

m (D−
1 ∪ · · · ∪ D−

n resp.) , say D+
i

(D−
j resp.) such that ξ1 ⊂ D+

i (ξ1 ⊂ D−
j resp.).

Proof. Since the argument is the same, we prove this only for E(L∪B)∩B+. Let S be the
component of ∂hN(B∩B+) which contains ξ1. Since B∩B+ fully carries D+

1 ∪· · ·∪D+
m,

we can move D+
1 ∪ · · · ∪D+

m by an isotopy in N(B ∩B+) so that S ⊂ (D+
1 ∪ · · · ∪D+

m).
Let D+

i be the component of D+
1 ∪· · ·∪D+

m such that D+
i ⊃ S. This gives the conclusion

of Lemma 4.4. �

The proof of Theorem 4.1 is a consequence of the following four lemmas. Hereafter we
moreover suppose that L is an alternating link, and E is a reduced, connected alternating
diagram.

An imbedded closed surface F ⊂ S3 − L is called pairwise compressible if there is a
disk D ⊂ S3 meeting L transversely in one point, with D ∩ F = ∂D as defined in [M1].
Otherwise we say that F is pairwise incompressible.

Lemma 4.5. E(L ∪B) is irreducible and ∂E(L) is incompressible in E(L ∪B).

Proof. Suppose, for a contradiction, that there is a compressing disk for ∂E(L) in E(L∪
B). Then it follows either that L is the trivial knot or that L has at least 2-components
and contains a component bounding a disk. In the latter case, L is split. On the other
hand, since the alternating diagram E is reduced and connected, L is not the trivial knot
by, for example, [Ba] and L is non-split in S3 by [M1]. Hence in both cases we have a
contradiction. Thus ∂E(L) is incompressible in E(L ∪B).

Suppose, for a contradiction, that E(L ∪ B) is reducible. Let Q be a sphere which
does not bound a ball in E(L ∪ B). Then we will show that we can retake the splitting
sphere Q so that Q is in standard position as in [M1, Proof of Lemma 1], that is, so that
Q satisfies the conditions (1)-(4) below.

(1) Q intersects S+ and S− transversely and Q intersects each crossing ball bounded
by a bubble in zero or several “saddle-shaped” disks as shown in Figure 2.2.

For a splitting sphere Q satisfying the above condition (1), we define the complexity
c(Q) of Q to be the lexicographically ordered pair (s, t), where s is the number of saddles
of Q and t is the sum of the number of components of Q ∩ S+ and Q ∩ S−. From now
on we assume that Q satisfies the above condition and has minimal complexity among
all splitting spheres.

Claim. Q satisfies the following conditions;

(2) Each circle of Q ∩ S+ (resp. Q ∩ S−) bounds a smooth disk in Q ∩ B+ (resp.
Q ∩B−).
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(3) Every circle of Q ∩ S+ and Q ∩ S− meets a bubble.
(4) No circle of Q∩S+ and Q∩S− meets the same side of a bubble more than once.

Proof. From Lemma 4.2, every component of E(L ∪ B) ∩ B± is a 3-ball. Hence incom-
pressible surfaces properly imbedded in E(L∪B)∩B± whose non-empty boundaries are
contained in ∂B± are disks.

For (2), suppose not. Then Q ∩ B± is compressible in E(L ∩ B) ∩ B±. Let D′ be a
compressing disk. A surgery of Q with D′ produces two spheres, one of them is a new
splitting sphere with fewer complexity. This is a contradiction to the minimality of the
complexity c(Q).

For (3), suppose not. Then there is a circle which is contained in a region and bounds
a subdisk D′ of S0 in the region. If B meets D′, then we can find a 0-gon or monogon
in D′ which contradicts Lemma 2.1. Hence B is disjoint from D′. Then a surgery of Q

along D′ and a slight isotopy yields a new splitting sphere with fewer complexity, which
is a contradiction.

For (4), suppose not. Let C be a circle of, say, Q ∩ S+ which meets the same side
of a bubble X more than once. We assume C is innermost among such circles on S+.
Since C is innermost, we can take saddles s1 and s2 in X such that C meets s1 and s2

successively and s1 and s2 are adjacent among saddles of Q, that is, there is no saddle of
Q between s1 and s2 in X. Let d be the disk bounded by C on S+ such that d contains
the subdisk of X+ = X ∩ S+ between the arcs s1 ∩X+ and s2 ∩X+.

Suppose, for a contradiction, that there is a saddle, say s′, of B between s1 and s2.
Let α be the boundary of a disk D+

i which intersects X in an arc of X ∩ s′. Then by the
condition (4-1) of the definition of standard position of branched surfaces, α is a smooth
loop imbedded in τ+. Since α is contained in d, α meets the same side of X more than
once, which contradicts the condition (4-3) of the definition of standard position. Hence
there is no saddle of B between s1 and s2.

Then as in the proof of [M1, Lemma 1 (ii)], we can isotope Q so as to reduce c(Q),
which is a contradiction. �

In general, let F be a surface in E(L) in standard position. Let α be a circle of
F ∩ S+(resp. F ∩ S−) which meets some bubble X. We define the mate to α at X to be
a component of F ∩ S+(resp. F ∩ S−) which meets the other side of X and contain the
subarc of the boundary of the saddle which is incident to α at X.

Every circle of F ∩ S± satisfies the following alternating property ([M1]);

(*) If a circle C ⊂ F ∩S± meets two bubbles B1 and B2 (they are possibly the same
bubble) in succession, then two arcs of L∩S± in B1 and B2 lie on opposite sides
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of C.

Proof of Lemma 4.5(continued). Let C be a circle of Q ∩ S± which is innermost on S±.
The circle C intersects a bubble by (3) of the above Claim. Then by the alternating
property (*) above, we can show that C meets the bubble more than once, otherwise,
in the innermost disk we can find another circle which is a mate to C at the bubble, a
contradiction. Since Q is in standard position, C meets the distinct sides of the bubble.
Then, as in [M1, Proof of Lemma 1], we can show that Q is pairwise compressible. But
since S3 does not contain a non-separating 2-sphere, Q is pairwise incompressible, a
contradiction. This completes the proof of Lemma 4.5. �

Lemma 4.6. No component of ∂hN(B) is a sphere.

Proof. Suppose for a contradiction that ∂hN(B) contains a sphere component Q. From
Lemma 4.3, ∂Nh(B) ∩B± is disjoint union of disks. Hence Q ∩B± consists of properly
imbedded disks. Then as in the last paragraph of the proof of Lemma 4.5, we can find
a disk D of Q ∩ B± which meets a bubble more than once. If ∂D meets the same side
of the bubble more than once, then, since Q ⊂ ∂hN(B), we can find a boundary of D+

i

or D−
j violating the condition (4-3) of the definition of standard position, which is a

contradiction. If ∂D meets the distinct sides, then as in the last paragraph of the proof
of Lemma 4.5 we have a contradiction. �

Lemma 4.7. Suppose B satisfies the conditions (1), (2) and (3) in the definition of nice
branched surface. Then ∂hN(B) is incompressible in E(L∪B) and there is no monogon
in E(L ∪B).

Proof. Suppose, for a contradiction, that ∂hN(B) is compressible in E(L ∪ B) or there
is a monogon. Let D be a compressing disk of ∂hN(B) or a monogon. From Lemma 4.3,
∂hN(B)∩B± is a disjoint union of disks. Hence, if D is a compressing disk, D intersects
S±. If D is a monogon and disjoint from S±, we can find a pinching between subsurfaces
of D+

i or D−
i of the systems of generating disks. This contradicts the condition (4-1) of

the definition of standard position of branched surfaces. Hence D intersects S±.
By replacing D if necessary, we will show that we can put D in standard position as

in [M2, Lemma 4], that is, so that D satisfies the conditions (1)-(5) below.

(1) D intersects S+ and S− transversely and D intersects each crossing ball bounded
by a bubble in zero or several “saddle-shaped” disks as shown in Figure 2.2.

For a compressing disk or monogon D satisfying the above conditions, we define the
complexity c(D) of D to be the lexicographically ordered pair (s, t), where s is the number
of saddles of D and t is the sum of the number of components of D ∩ S+ and D ∩ S−.
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From now on we assume that D has minimal complexity among all compressing disks or
monogons.

Claim 1. D satisfies the following conditions;

(2) Each circle of D ∩ S+ (D ∩ S− resp.) bounds a smooth disk in D ∩B+ (D ∩B−

resp.).
(3) Every circle of D ∩ S+ and D ∩ S− meets a bubble.
(4) No circle of D∩S+ and D∩S− meets the same side of a bubble more than once.
(5) No arc of D∩S+ and D∩S− contains a subarc contained in a region of E whose

endpoints are contained in a bubble.

Proof. For (2), (3) and (4), the same argument in the proof of Claim in the proof of
Lemma 4.5 will do. For (5), the argument in the proof of (4) of Claim in the proof of
Lemma 4.5 will do. �

Claim 2. There is no circle in D ∩ S±.

Proof. Suppose there is a circle in D ∩ S±, say in D ∩ S+. Take an innermost circle
C ⊂ D ∩ S+ on S+. Let dC be the innermost disk bounded by C on S+. By the
alternating property (*), either C meets a bubble more than once or we can find a mate
to C in dC . In the former case, since D is in standard position, C meets the distinct
sides of the bubble. Then, as in the last paragraph of the proof of Lemma 4.5, we have
a contradiction. Hence we can find a mate to C in dC . Since C is an innermost circle,
the mate is an arc and connects to τ+. Next take an innermost circle C ′ of D ∩ S+

in S+ − Int dC bounding an innermost disk dC′ in S+ − Int dC . (Possibly C ′ = C.)
Then by the same argument above, we can find a component of τ+ in dC′ . Hence τ+

is disconnected, which contradicts the condition (1) in the definition of nice branched
surface. Therefore there is no circle in D ∩ S±. �

Now we form a graph G on D such that the “square” vertices of G are saddles in D

and the edges of G are arcs of D∩S0. Note that every vertex has valency equal to 4. An
edge e is an outermost arc if it is incident to no vertex and cuts off a subdisk d′ from D

such that d′ ∩G = e and that d′ is disjoint from the vertex of D in case D is a monogon.

Claim 3. There is no outermost arc in G.

Proof. Suppose G contains an outermost arc e. Then e is contained in a region, say R, of
E. Without loss of generality, we assume d′ ⊂ B+. Then, by Lemma 4.4, the endpoints
a and b of e connects with a smooth circle α contained in τ+ which is the boundary of a
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disk D+
i for some i. We take α so that α is innermost among such circles on the side of

e on S+.
Suppose one of the two arcs α1 of α− (a ∪ b) is contained in the region R. Then, by

Lemma 2.1, and since α is innermost, e∪α1 bounds a disk d in R such that (Int d)∩B = ∅.
If (Int d) ∩D �= ∅, then, by (3) in Claim 1, D meets d in arcs. Then we replace e with
an outermost arc of d∩D and use d to denote the new disk cobounded by the outermost
arc and a subarc of α1. By performing surgery of D along d, we obtain two disks, one
of which must be a compressing disk or a monogon. We call this new disk D′. Then the
sum of the number of the components of D′∩S+ and D′∩S− is less than that of D∩S+

and D ∩ S−, which contradicts the minimality of the complexity of D.
Therefore both of two arcs of α − (a ∪ b) go out of R. Since α = ∂D+

i , α violates
the condition (2) in the definition of nice branched surfaces. Hence there is no such
outermost arc. �

A face of G is the closure of a component of D−G. Now we define an outermost fork,
which is a subgraph of G as shown in Figure 4.6. That is, there are two adjacent faces
D+ and D− of G, two arcs η+ ⊂ D ∩ S+ and η− ⊂ D ∩ S− and a saddle s such that
∂D+(resp. ∂D−) consists of η+(resp. η−) and a subarc of ∂D and η+ and η− meets a
common saddle s and no other saddles.

Figure 4.6

Proof of Lemma 4.7(continued). From Claim 2, there is no circle in D∩S± which implies
that each component of G is simply connected, i.e., a tree. Since there is no outermost
disk by Claim 3, by an outermost fork argument, we can find two outermost forks, in
one of them its two faces D+ and D− are disjoint from the vertex of D in case D is a
monogon. Let η+, η− and s be as in the definition of outermost fork. Let X be the
bubble containing s. By Lemma 4.4, around η+ ∪X ∪ η−, there are two smooth circles
α ⊂ τ+ and β ⊂ τ− which bound smooth disks D+

i and D−
j for some i and j such that

D+
i and D−

j contains ∂D+ − η+ and ∂D− − η−, respectively. Let d+(resp. d−) be the
smooth disk on S+ (resp. S−) bounded by α (resp. β) on the side of η+ (resp. η−). We
assume that α (resp. β) is innermost among such circles bounding the innermost disk
d+ (resp. d−). Let R be the region of E containing the point ∂η+ ∩ ∂η−, and R1(resp.
R2) containing ∂η+−∂η−(resp. ∂η−−∂η+). Let γ be the arc of (B−Λ)∩S0 containing
∂η+ ∩ ∂η−. See Figure 4.7.

Figure 4.7
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Suppose, for a contradiction, that α or β meets the arc X ∩ R, say α does. Since,
by the condition (2) of the definition of nice branched surface, α meets R exactly once,
then there is a subarc ξ ⊂ α connecting ∂η+ ∩ ∂η− and X such that Int ξ does not meet
bubbles. Then ξ, η+ ∩R and a subarc of X ∩R form a loop which bounds a disk d. See
Figure 4.8.

Figures 4.8 and 4.9

Claim 4. (Int d) ∩B = ∅.

Proof. Suppose, for a contradiction, that (Int d) ∩ B �= ∅. Let δ be the boundary of
a disk, say D+

k , which contains a part of B ∩ S+ contained in Int d. By the condition
(4-2) of the definition of standard position, δ goes out of d. There are three cases as in
Figure 4.9; (1)δ meets X twice, (2)δ meets the point ∂η+ ∩ ∂η− twice, or (3)δ meets X

and ∂η+ ∩ ∂η−. For (1), δ violates the condition (4-3) of the definition of the standard
position. For (2), it contradicts (4-1) of the definition of the standard position. For (3),
it contradicts the way of choice of α. Hence we have a contradiction. �

Claim 5. There is no pattern as in Figure 4.8 such that (Int d) ∩B = ∅.

This claim corresponds to [S, Lemma 4.18], but we include the proof for the conve-
nience for the reader.

Proof. First suppose (Int d) ∩D �= ∅. Then by (3), (4) and (5) of Claim 1 and Claim 3,
(Int d) ∩D consists of arcs connecting ξ ∩ d and X ∩R. Then in d we can find another
pattern as in Figure 4.8. By replacing the pattern with the innermost one in d, we assume
that (Int d) ∩D = ∅.

Let s′ be the saddle contained in X and incident to ξ. Since (Int d) ∩ (D ∪ B) = ∅,
s and s′ are adjacent saddles in X. Now we take a look at the other side of the saddles
s and s′. Then there is a subarc of τ+, say ξ′, and an arc of D ∩ S+, say η′, which are
mates of ξ and η+ at X respectively.

First we consider the special case, where η′ connects with ξ′ such that subarcs of η′,
ξ′ and X ∩R2 together cobounds a disk d′ in R2 and that two points ξ ∩ η+ and ξ′ ∩ η′

is connected by a subarc of ∂D, say ζ. Moreover we assume that d′ is innermost among
such disks. See Figure 4.10. Note that, since d′ is contained in R2, Int (ξ′ ∩ d′) and
Int (η′ ∩ d′) does not meet bubbles. Moreover, by (3) of Claim 1, Claim 3 and Claim 4,
and the fact that s and s′ are adjacent saddles in X, (Int d′) ∩ (D ∪ B) = ∅. We take
an arc δ on B ∩B− which is parallel to one of an edge of s′ as in Figure 4.11. Then the
loop consisting of a subarc of ξ, ζ, a subarc of ξ′ and δ bounds a disk Q in B ∩B−. We
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isotope D along Q so as to eliminate the saddle s as shown in Figure 4.12. This isotopy
reduces c(D).

Figures 4.10, 4.11, 4.12 and 4.13

In general case, we can also apply the above argument as follows. Take a triangle xyz

on S− as shown in Figure 4.13, where x = η+∩ξ∩d, y = η′∩X∩R2 and z = ξ′∩X∩R2.
We slightly isotope this triangle into B− so that x ∈ ∂D ∩ (Int B−), y ∈ η′ ∩ (Int R2)
and z ∈ ξ′ ∩ (Int R2). See Figure 4.14. We isotope D along this triangle so that τ±,
D ∩ S± and ∂D is as in Figure 4.15. Then we isotope D so as to eliminate the saddle s,
which reduce c(D). �

Figures 4.14 and 4.15

Hence, by Claims 4 and 5, we have shown that α and β miss X ∩ R. Thus we can
find the pattern as in Figure 4.2, which contradicts (3) of the definition of nice branched
surfaces. This completes the proof of Lemma 4.7. �

Hereafter we moreover suppose that E is a prime diagram.

Lemma 4.8. Suppose B satisfies the conditions (4), (5) and (6) in the definition of nice
branched surface. Then B has no disk of contact.

Proof. Suppose, for a contradiction, that N(B) contains a disk of contact D. We assume
that N(B) meets S± in a union of I-fibers. By the definition, D meets fibers of N(B)
transversely. Since ∂D is contained in ∂vN(B), from the condition (3) of the definition
of standard position of branched surfaces, D meets S±. Hence D satisfies the following
condition;

(1) D intersects S+ and S− transversely and intersects each crossing ball bounded
by a bubble in zero or several “saddle-shaped” disks as shown in Figure 2.2.

Now we form a graph G on D as in the proof of Lemma 4.7. Note that here G may
be disconnected and contain non-disk faces.

Claim 1. G does not contain an arc component disjoint from saddles.

Proof. Suppose, for a contradiction, that G contains an arc e disjoint from saddles. Since
e does not meet bubbles, e is contained in a region of E. If e meets a fiber of N(B)
more than once, we can find in the region a smooth circle imbedded in τ± or a monogon,
which contradicts Lemma 2.1. Hence e does not meet a fiber of N(B) more than once.
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Then we can find a pattern as in Figure 4.3, which contradicts the condition (4) of the
definition of nice branched surfaces. Hence G does not contain such an arc. �

We take a component G′ of G such that G′ meets ∂D and we regard G′ as a graph on
D. Since G′ is connected, every face of G′ is a disk.

Claim 2. There is no outermost fork in G′.

Proof. Suppose there is an outermost fork. If two arcs η+ and η− of the outermost fork
meet a fiber of N(B) more than once, then B violates the conclusion of Lemma 2.1.
Hence η+ and η− meet every fiber of N(B) at most once. Thus we can find a pattern
as in Figure 4.4, which contradicts the condition (5) of the definition of a nice branched
surfaces. �

Claim 3. G′ contains a pattern depicted in Figure 4.16, that is, for n ≥ 2, there are
n+1 faces D1, · · · , Dn+1 of G′, arcs γ1, · · · , γn+1 ⊂ D∩S± and saddles s1, · · · , sn such
that ∂Di is a union of γi and a subarc of ∂D. Moreover γi meets two saddles si−1 and
si for 2 ≤ i ≤ n, and γ1(γn+1 resp.) meets only one saddle s1(sn resp.).

Figure 4.16

Proof. In this proof, we regard every point of ∂D∩S0 as also a vertex of G′ and it is called
a boundary vertex. Other vertices originating from saddles are called inner vertices. We
also regard a subarc of ∂D connecting two adjacent boundary vertices as an edge of G′

and call it a boundary edge. Other edges originating from D ∩ S0 are called inner edges.
Let fi denote the number of i-gons of G′, that is, a face of G′ with i edges. We assign
the number i− 4 for each i-gon in G′. Then the following equality holds.

Subclaim 1.
∑

i (i− 4)fi = −4

Proof. Let f , e and v denote the numbers of faces, edges and vertices of G′ respec-
tively. Let v∂ , vi, e∂ and ei denote the numbers of the boundary vertices, inner vertices,
boundary edges and inner edges, respectively.

We have

(1) f =
∑

i fi, v = v∂ + vi, e = e∂ + ei and v∂ = e∂ ,
(2) v − e + f = 1 (Euler’s formula),
(3) 2e = 3v∂ + 4vi (by the valencies of the vertices), and
(4) 2e =

∑
i ifi + e∂ (by the number of the edges of the faces).
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From (1), (2) and (3), we have 2f =
∑

i 2fi = v∂ + 2vi + 2. From (1), (3) and (4),
we have

∑
ifi = 2v∂ + 4vi. From the above two equations, we obtain the equation in

Subclaim 1. �

A face of G′ is called an inner face if it meets only inner edges. A face which meets a
boundary edge is called a boundary face.

Subclaim 2. Every inner face has even vertices.

Proof. Otherwise we can find a circle on S meeting E in odd points, which is a contra-
diction. �

Suppose there is an inner 2-gonal face. Let C be the loop of D ∩ S± which is the
boundary of the 2-gonal face. If C meets two distinct bubbles, then, from the alternating
property(*), we can show that E is composite. See Figure 4.17. Thus C meets a bubble,
say X, twice. Then C meets the same side of X twice, otherwise we can form a loop on
S± meeting E exactly once, which is a contradiction. Let ξ be one of the two components
of C − X. Then the interior of ξ does not meet bubbles and ξ and a subarc of X ∩ S0

cobounds a disk d whose interior is contained in a region. We consider ξ is carried by
τ±. If there is a smooth arc imbedded in τ± ∩ d which meets Int d and cobounds a disk
together with a subarc of ∂d∩X as in Figure 4.18, then we take an outermost such arc,
replace ξ and d with the outermost arc and its outermost disk and also call them ξ and
d. If τ± meets Int d, then we can find a 0-gon or monogon contained in a region, which
contradicts Lemma 2.1. Hence (Int d) ∩ τ± = ∅. Then we can find the boundary of a
disk D±

i which meets the same side of X more than once. It contradicts the condition
(4-3) of the definition of standard position of B. Hence there is no inner 2-gonal face.
This together with Subclaim 2 shows that for every inner i-gonal face, i− 4 ≥ 0.

Figures 4.17 and 4.18

Note that every boundary face meets at least three vertices. Hence, for only boundary
3-gons, i− 4 < 0, and there are at least four 3-gons by Subclaim 1. By Claim 2, there is
no outermost fork in G′. Suppose that G′ does not contain a part as in Figure 4.10. Then
it follows that among the boundary faces between every pair of boundary 3-gons, there
is a face which is not a 4-gon. Then it follows that

∑
(i − 4)fi ≥ 0, which contradicts

Subclaim 1. This completes the proof of Claim 3. �

Proof of Lemma 4.8(continued). By Claim 3, G′ contains a part as in Figure 4.16. By
the same argument as in the proof of Claim 1 and in the paragraph right after the proof
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of Subclaim 2, each arc γi meets a fiber of N(B) at most once and each pair of saddles
si and si+1 is contained in distinct bubbles Xi and Xi+1 respectively. Then we can find
a pattern as in Figure 4.5, which contradicts the condition (6) of the definition of nice
branched surfaces. This completes the proof of Lemma 4.8. �

Proof of Theorem 4.1. Theorem 4.1 follows from Lemmas 4.5, 4.6, 4.7 and 4.8. �

§5 Existence of locally affine laminations carried by branched surfaces

Let L, S, E, S±, B±, and S0 be as in section 2. Let B be a branched surface in standard
position with respect to the diagram E. In this section, we give some conditions for B to
fully carry a lamination by using admissible weights on some train track obtained from
τ±. In Theorem 5.3, under a technical condition on B, we give a necessary and sufficient
condition for B to fully carry a lamination which is affine (for the definition, see below)
as a lamination in N(B). In Theorem 5.4, we consider the general setting. We give
a necessary condition for B to fully carry a lamination which is affine as a lamination
in N(B), and show that under this condition B fully carries an affine lamination after
adequate splitting operations.

For the statement of the result, we first prepare some terminologies.
In general, let τ be a train track embedded in a surface F , and m the number of edges

of τ . The switches of τ are the vertices of the graph τ . We fix an ordering on the edges
e1, . . . , em arbitrarily. An m-tuple of non-negative real numbers w = (w1, . . . , wm) is a
system of admissible weights on τ if the switch condition is satisfied at each vertex of
τ (see Figure 5.1). That is, if ei, ej and ek are incident to a vertex v with v having
the smooth valency 2 along ei (see section 4 for the definition of smooth valency), then
wi = wj +wk. We often regard w as an element of m-dimensional real vector space R

m.
We say that w is positive if each wi is a positive number.

Figures 5.1, 5.2 and 5.3

For a train track τ , there is a fibered neighborhood N(τ) in F locally modelled as in
Figure 5.2.

For a positive system of admissible weights w = (w1, . . . , wm), we can construct a
measured neighborhood Nw(τ) with a measured foliation (F , µ), where µ is a transverse
measure of F invariant under the translation along the leaves of F , and is obtained from
w. (For a detailed discussion on the transverse invariant measures, we refer to [FLP].)
See Figure 5.3. Note that F has a finite number of singular leaves, where the singularities
correspond to the vertices of τ . If each entry of (w1, . . . , wm) is a non-negative integer,
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then this gives also a union of mutually disjoint simple closed curves L in N(τ) with the
counting measure µc, that is, µc is the measure such that for a simple closed curve = on
F in general position with respect to L, µc(=) is the number of the points of =∩L. Then
we say that (w1, . . . , wm) represents the simple closed curves.

Let M be a compact 3-manifold, and B a branched surface in M . Note that each
2-manifold carried by B is properly embedded in M . The sectors of B are the metric
completions of the components of B−(the branch loci). Let S1, . . . , Sn be the sectors of
B. Then we can assign a non-negative real numbers wi, called a weight, to each sector
Si. We say that a system of weights on the sectors (w1, . . . , wn) is admissible if it satisfies
the following switch condition at each branch locus.

Recall that the branch loci of B is an immersed 1-manifold with finitely many
transverse self intersection. Then we remove the intersection points from the
branch loci to obtain a system of mutually disjoint 1-manifolds in M . Let ρ

be one of them, and p a point in Int (ρ). Then there is a regular neighborhood
Dp of p such that Dp ∩ ρ is an arc properly embedded in Dp and that B ∩Dp

consists of three half-disks, say ∆1, ∆2, ∆3, with sharing Dp ∩ ρ as their
diameters. Here we may suppose that ∆1∪∆2 and ∆1∪∆3 are smooth disks.
Let Si, Sj , Sk be the sectors which contains ∆1, ∆2, ∆3 respectively. (Note
that two or three of Si, Sj , Sk might coincide.)

Then we have
wi = wj + wk.

Considering all the circles and subarcs of the branch loci as above, we obtain the
system of the switch equation for B. We say that (w1, . . . , wn) is positive if each wi is a
positive number. For a positive system of admissible weights w = (w1, . . . , wn), we can
construct a measured neighborhood Nw(B) with a measured foliation (F , µ), where µ is
a transverse measure of F invariant under the translation along the leaves of F , and is
obtained from w. See Figure 5.4.

Figure 5.4

Note that F has a finite number of singular leaves, where the singularities correspond
to the branch loci of B.

Note that if each entry of (w1, . . . , wn) is a non-negative integers, then this gives a
union of mutually disjoint surfaces in N(B) with counting measure µc. Then we say that
(w1, . . . , wn) represents the surface. Obviously there is a 1 to 1 correspondence between
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the set of admissible integral weights and the set of the fiber preserving isotopy classes
of unions of mutually disjoint compact surfaces carried by B and properly embedded in
M . (Note that surfaces carried by incompressible branched surfaces are incompressible.
See Theorem 1 of [FO] and Theorem 2 of [O’].)

We return to our situation.

For the proof of the next proposition, see Appendix C.

Proposition 5.1. Let L be a link with a diagram E, and B a closed branched surface in
standard position with respect to E. Let L± be a lamination fully carried by the branched
surface B ∩ B±, which is a pinching of a system of generating disks by the definition
of standard position. Then there is another system of generating disks E1, . . . , Ep for
B ∩ B± such that each leaf of L± is isotopic to some Ei in the I-bundle N(B ∩ B±) by
a fiber preserving isotopy. For each Ei, the union of the leaves of L± which are isotopic
to Ei by fiber preserving isotopies is a closed subset of B±.

Note that L± may be a lamination without an affine structure in the above proposition.

Here we prove:

Lemma 5.2. There exist only finitely many systems of generating disks for B∩B±, and
they are constructible.

Proof. Since the argument is the same, we prove this lemma only for B ∩ B+. We first
describe a method for obtaining all systems of generating disks for B ∩B+.

If B ∩ B+ is a disjoint union of disks, then the system of the components of B ∩ B+

gives a unique system of generating disks, and we are done. Suppose that a component
of B ∩B+ is not a disk. Then we first take a properly embedded smooth disk in B+, say
D1, which is contained in B∩B+, and is outermost in B+, i.e., there exists a component
H of B+ −D1 such that H ∩B = ∅. It is clear that there are only finitely many choices
of D1. Let S be a union of sectors of B ∩B+. We say that S is admissible with respect
to D1 if S ⊂ D1, and cl(B ∩ B+ − S) is a branched surface. Since B ∩ B+ has only
finitely many sectors, we see that there exist only finitely many unions of sectors which
are admissible with respect to D1. Then let B1 be one of the branched surfaces obtained
from B ∩B+ by removing a union of sectors which is admissible with respect to D1.

Then we apply the above arguments to B1, and so on. We note that if there does not
exist an outermost disk in B1, then we leave B1 out of consideration. Since the number
of the sectors of B ∩B+ is finite, we see that all of these procedures terminate in finitely
many steps to obtain finitely many systems of mutually disjoint disks properly embedded
in B+.
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We claim that any system of generating disks for B ∩ B+ can be obtained by a
procedure as above. In fact, any system of generating disks for B∩B+ has an outermost
disk that can be regarded as D1 above, and we can set S to be the union of sectors of
D1 disjoint from the other disks of the system.

Since there are finitely many choices of D1 and S in every step, there are finitely many
systems of generating disks for B ∩B+. �

Example. We will consider B ∩ B+ which is a union of two smooth discs D1 and D2

properly embedded in B+ as below. The subsurface of pinching D1 ∩D2 is a rectangle
R such that the union of a pair of two opposite edges of R are exactly ∂D1 ∩ ∂D2 and
that the other two edges are the branch loci of the branched surface D1 ∪D2. Note that
the branch loci are properly embedded in D1 and D2.

Let Γ1 and Γ2 (∆1 and ∆2 resp.) be the closures of the components of D1−R (D2−R

resp.) such that Γi ∩∆i (i = 1, 2) is a component of the branch arcs. Then the branched
surface D1 ∪D2 can be regarded as the union of the three smooth disks D1, Γ1 ∪R∪∆2,
D2, or of the three smooth disks D1, Γ2 ∪ R ∪ ∆1, D2. This shows that there are three
systems of generating disks for B∩B+, and by the argument as in the proof of Lemma 5.2
we can show that these are all of the possible systems.

In general, as defined in [O], a transverse affine structure for a lamination L embedded
in a 3-manifold M is a transverse invariant measure µ for the preimage L̃ of L in the
universal cover M̃ of M such that there exists a homomorphism φ : π1(M) → R+ which
satisfies the condition below.

For each α ∈ π1(M), we have α∗(µ) = φ(α) · µ, where α∗(µ) is the pull-back
of the measure µ with α regarded as a covering translation.

The lamination L together with the transverse affine structure µ is called an affine
lamination.

For any positive system of admissible weights on a branched surface, it is known
that there is a measured lamination corresponding to the weights. For a proof of this,
see Theorem 2.1 in Chapter II of Morgan-Shalen’s paper [MS]. Here we give another
construction of such a lamination, which must be well known to experts. Recall that,
for a system of admissible weights w = (w1, . . . , wn), we can construct a measured
neighborhood Nw(B) with a measured singular foliation (F , µ). Let FS be the union of
the singular leaves of F , and CS the union of branch lines in F (Note that F does not
have singularity of type triple points.) Then we construct abstract I-bundles M(FS−CS)
(M(CS) resp.) with base space FS − CS (CS resp.), where I-bundle structure coincides
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with the normal bundle structure on FS in M (CS in FS resp.). Note that M(FS −CS)
and M(CS) have not been embedded in M yet. Then let M(FS) be the 3-manifold
obtained from M(CS) by attaching M(FS −CS) so that M(FS) looks like a total space
of a measured neighborhood of FS (see Figure 5.4). We use the following notations.

Let
p : Nw(B) → B be the map giving the I-bundle structure on Nw(B),
pS : FS → B the restriction of p to FS ,
pF : M(FS) → FS the map giving the I-bundle structure inherited from those on

M(CS) and M(FS −CS), where we suppose that M(FS) is equipped with a Riemannian
metric such that the length of the I-fibers become very swiftly short towards ends of FS .

Then let ∂hM(FS) be the subsurface of ∂M(FS) corresponding to the ∂I-bundle.
Let E(FS) be the metric completion of M − FS , and ∂hE(FS) the subsurface of

∂E(FS) consisting of the completed points. Then there is a homeomorphism

f : ∂hM(FS) → ∂hE(FS)

coming from the bundle structures, i.e., if x ∈ FS , then the boundary of the fiber p−1
F (x)

is mapped to the points of ∂hE(FS) corresponding to x in M respecting the normal
bundle structure. Finally let M∗ be the manifold obtained from M(FS) and E(FS) by
identifying ∂hM(FS) and ∂hE(FS) by f , and N∗(B) the image of Nw(B) ∪ M(FS) in
M∗.

For a point x ∈ B, let I∗x be the image of p−1(x) ∪ (pS ◦ pF )−1(x) in N∗(B). Then

Claim. I∗x is homeomorphic to the unit interval I.

Proof. Note that the number of the components of FS is less than or equal to the number
of the branch loci in B, hence it is finite. Note also that since FS is “carried by B ”,
each component of FS can be regarded as a union of countable number of copies of the
sectors of B. These show that for each x ∈ B, p−1(x)∩FS consists of countable number
of points. Hence I∗x is obtained from the I-fiber p−1(x) by inserting the components of
(pS ◦ pF )−1(x) at p−1(x)∩FS . Since the length of the I-fibers become very swiftly short
towards ends of FS , we see that each I∗x is homeomorphic to I

For example, we can define thickness of M(FS) as below. We call the path-metric
closure of each component of FS −M(CS) a piece. For every component of FS we choose
a single piece, and let P0 denote the set of such pieces. We inductively define a set of
pieces Pi as below. We define Pi is the set of pieces which are adjacent to a piece of Pj

and are not contained in Pj for j < i. Let Pi = ∪Pi be the union of the pieces of Pi.
Then FS = ∪∞

n Pn.
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There is a positive integer A such that for every piece P the number of the pieces
adjacent to P is less than A. We can choose A according to the branched surface B

independently from FS . Note that the number of pieces of Pn is An. We can define
thickness of M(FS) so that the length of the I-fiber over each point of Pn is shorter than
1/(2A)n, and that that of Pn ∩ Pn+1 is shorter than 1/(2A)n+1.

Let T be a positive integer such that the number of intersection points of any I-fiber
and any piece is less than T . We can choose T according to B independently from FS .
Then for each I-fiber Ix, the number of the intersection points Ix ∩ Pn is smaller than

TAn. Hence (the length of M(FS) ∩ Ix) ≤
∑∞

n=0

1
(2A)n

· TAn = 2T < ∞.

Moreover it is easy to see that these I∗x give an I-bundle structure on N∗(B), which
is fiber preserving homeomorphic to N(B) rel ∂hN(B). This shows that M∗ is homeo-
morphic to M . Now we consider the image of Nw(B) in M∗. Here we note that some
components of the image of Nw(B) are not smooth in a neighborhood of branch loci of
B. Since such components are isolated from both sides, we can remove them to obtain
a lamination, say Lw in M∗. Then there is a transverse invariant measure µL on Lw

induced from the transverse invariant measure on Nw(B), which represents the system
of admissible weights w. Note that µL is 0 on M(FS).

Conversely suppose a lamination L admits a transverse invariant measure µ. If L is
carried by a branched surface B, then we can obtain a system of admissible weights on
B from µ as follows.

Let S be a sector of B, and J an I-fiber of the I-bundle N(B) such that
J ∩ (Int S) �= ∅. Then we define the weight on S by µ(J).

Note that the lengths of every pair of I-fibers in (a sector) ×I are equal since the
measure is invariant under translations along the leaves. It is easy to see that this
defines a system of admissible weights on B.

In [O], it is shown that we can obtain all possible affine laminations carried by B via
what are called broken invariant measures on B. Here we quickly see the method.

Let {S1, . . . , Sk} be any set of transversely oriented properly embedded surfaces in M ,
which represents a basis for H1(M ; R). We may suppose that S1, . . . , Sk, and B are in
general position, and hence we obtain a branched surface B′ with boundary by cutting
B along the union of the surfaces ∪iSi. Then we consider a pair of arrays of positive
real numbers ((σ1, . . . , σk),w), where w is a system of admissible weights on B′. We say
that ((σ1, . . . , σk),w) is a broken invariant measure on B (for S1, . . . , Sk) if it satisfies
the following condition.
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Let Q−, Q+ be sectors of B′ such that Q− ∩Q+ contains a 1-manifold, say =, where
= ⊂ Si. Let N(=) be a small regular neighbourhood of = in Q− ∪ Q+, and N+(=) (resp.
N−(=)) intersection of N(=) and the +-side (resp. the −-side) of the surface Si. Suppose
that N+(=) ⊂ Q+ and N−(=) ⊂ Q−. Then we have w+ = σiw−, where w± denotes the
weight on Q± in w.

Then it is known that:

Proposition 1.3 of [O]. Every broken invariant measure on B represents an affine
lamination. Conversely, if L is a lamination carried by B which is affine in M , and a
set of surfaces S1, . . . , Sk represents a basis for H1(M ; R), then there is a broken invariant
measure of B for S1, . . . , Sk which represents the affine lamination L.

Remark. We note that the correspondence between the affine structure and the broken
invariant measure in Proposition 1.3. of [O] is natural. In fact, suppose there is a broken
invariant measure on B for S1, . . . , Sk. Let p : M̃ → M be the universal cover. Let R0

be an (arbitrarily fixed) component of p−1(M − ∪Si). Let S̃i be the preimage of Si in
M̃ . Then we define a transverse invariant measure on each component of p−1(B − ∪Si)
as follows.

Let R′ be a component of p−1(M −∪Si) and B′ the lift of a component B0 of B−∪Si

contained in R′. We note that R′ corresponds to an element x1[S1] + · · · + xk[Sk] ∈
H1(M ; R) (xi ∈ Z), with R0 regarded as representing the trivial element of H1(M ; R).
That is, if α is a path in M̃ from a point in IntR0 to IntR′, then the algebraic intersection
number of p(α) and Si is xi. Then we define the system of admissible weights on B′ by
σx1

1 · · ·σxk

k w|B0 , where w|B0 is the restriction of w on the sectors of B0.

We can show that (see the proof of Proposition 1.3 of [O]) this system of admissible
weights gives a system of admissible weights on p−1(B) which gives an affine structure
on a lamination L carried by B.

Let {D+
1 , . . . , D+

m}, {D−
1 , . . . , D−

n } be systems of generating disks for B+, B− respec-
tively. We say that a positive system of admissible weights w+ = (w+

1 , . . . , w+
s ) (w− =

(w−
1 , . . . , w−

t ) resp.) on τ+ (τ− resp.) is positively induced from the system of generating
disks if there exists a system of positive real numbers {α+

1 , . . . , α+
m}, ({α−

1 , . . . , α−
n } resp.)

such that

w+ =
m∑

i=1

α+
i b+

i (w− =
n∑

j=1

α−
j b−

j resp.),

where b+
i (b−

j resp.) is the system of admissible weights on τ+ (τ− resp.) representing
the simple closed curve ∂D+

i (∂D−
j resp.).
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Let τ0 = τ+ ∩ τ−. We say that a pair of systems of admissible weights w+ =
(w+

1 , . . . , w+
s ), w− = (w−

1 , . . . , w−
t ) on the train tracks τ+, τ− are projectively attach-

able along τ0 if the following is satisfied.

For each component f of τ0, the systems of weights on f induced from w+,
w− are projectively equivalent, i.e., let r be the number of the edges of f ,
and e+

i1
, . . . , e+

ir
, e−j1 , . . . , e

−
jr

the edges of τ+, τ− which are the edges of f

with the same ordering. Then there exists a positive number cf such that
(w+

i1
, . . . , w+

ir
) = cf · (w−

j1
, . . . , w−

jr
), where w±

i denotes the weight on the edge
e±i in w±.

Then we have,

Theorem 5.3. Let B be a branched surface in standard position with respect to a diagram
E of a link L, and let τ±, τ0 be as above. Suppose each component of B ∩B+, B ∩B− is
simply connected. Then B fully carries a lamination L such that L is affine in N(B) if
and only if there exist a pair of positive systems of admissible weights w+ = (w+

1 , . . . , w+
s ),

w− = (w−
1 , . . . , w−

t ) on τ+, τ− respectively which satisfy the following two conditions.

(1) There exists a system of generating disks {D+
1 , . . . , D+

m} ({D−
1 , . . . , D−

n } resp.)
for B+ (B− resp.) such that w+ = (w+

1 , . . . , w+
s ) (w− = (w−

1 , . . . , w−
t ) resp.) is

positively induced from the system of generating disks.
(2) The pair of the systems of admissible weights w+, w− are projectively attachable

along τ0.

Proof of only if part of Theorem 5.3. Let p : Ñ(B) → N(B) be the universal cover.
Suppose B fully carries a lamination L which is affine in N(B).

That is, there exists a transverse invariant measure µ on Ñ(B), and a homo-
morphism φ : π1(N(B)) → R+ such that for each α ∈ π1(N(B)) we have:

α∗(µ) = φ(α) · µ,

where α∗(µ) is the pull back measure of µ with α regarded as the covering
translation corresponding to α.

Recall that we can obtain a positive system of admissible weights on the branched
surface p−1(B) from µ.

Let N± = N(B)∩B±. Here we may suppose that N± a union of I-fibers of N(B). Note
that B± is disjoint from the interior of the crossing balls. Since each component of B∩B±
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is simply connected, each component of p−1(B ∩ B±) is homeomorphic to a component
of B ∩ B±. Hence there exists a lift B ∩ B± → Ñ(B), which gives a homeomorphism
onto the image, and we take an arbitrary one and fix it. By restricting the system of
admissible weights µ on the image of B ∩B± by the lift, we obtain a positive system of
admissible weights on B ∩B±. Note that this system of weights varies according to the
choice of the lift. Let L± = L ∩ B±, and µ± the transverse invariant measure on L±

induced by µ and representing the systems of weights. Let w± be the positive system
of admissible weights on τ± induced from the system of admissible weights on B ∩ B±.
By Proposition 5.1, there is a system of generating disks {D+

1 , . . . , D+
m} ({D−

1 , . . . , D−
n }

resp.) for B ∩B+ (B ∩B− resp.) which satisfies the following.

Each leaf of L+ (L− resp.) is isotopic to some D+
i (D−

j resp.) in the I-bundle
N(B ∩B+) (N(B ∩B−) resp.) by a fiber preserving isotopy.

Let D+
i (D−

j resp.) be the union of the leaves of L∩B+ (L∩B− resp.) which are isotopic
to D+

i (D−
j resp.) by fiber preserving isotopies in the I-bundle N(B ∩B+) (N(B ∩B−)

resp.). Recall that D+
i (D−

j resp.) is a closed subset of B+ (B− resp.) by Proposition 5.1.
Let

α+
i = max{µ+(J)|J is a subinterval of a fiber of N(B) such that ∂J ⊂ D+

i },

α−
j = max{µ−(J)|J is a subinterval of a fiber of N(B) such that ∂J ⊂ D−

j }.

That is, α+
i (α−

j resp.) is the “thickness ”of D+
i (D−

j resp.). Since L∩B± is a support
of the measure µ±, we see that α+

i > 0 (α−
j > 0 resp.). Since the measure is invariant

under translations along the leaves, we have

w+ =
m∑

i=1

α+
i b+

i ,w− =
m∑

j=1

α−
j b−

j ,

where b+
i , b−

j are the systems of weights representing simple closed curves ∂D+
i , ∂D−

j

carried by τ+, τ− respectively. This shows that w+ (w− resp.) is positively induced
from the system of generating disks {D+

1 , . . . , D+
m} ({D−

1 , . . . , D−
n } resp.).

Let f be a component of τ0. We note that the weight on f in w± is that of a
component of p−1(f) determined by the measure µ. On the other hand, the weights on
the components of p−1(f) are mutually projectively equivalent since α∗(µ) = φ(α) · µ,
for each α ∈ π1(M). Hence we see that the systems of weights on f induced from w+

and w− are projectively equivalent. Thus the systems of admissible weights w+, w− are
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projectively attachable along τ0. This completes the proof of only if part of Theorem
5.3.

Proof of if part of Theorem 5.3. Suppose there exist systems of admissible weights w+ =
(w+

1 , . . . , w+
m) and w− = (w−

1 , . . . , w−
n ) on the train tracks τ+ and τ− respectively which

are projectively attachable along τ0. Recall that we have w+ =
∑m

i=1 α+
i b+

i ,w− =∑n
j=1 α−

j b−
j , where b+

i , b−
j are the systems of weights representing simple closed curves

∂D+
i , ∂D−

j carried by τ+, τ− respectively. Here B ∩B+ (B ∩B− resp.) is a pinching of
D+

1 ∪· · ·∪D+
m (D−

1 ∪· · ·∪D−
n resp.). We may regard the weight α+

i (α−
j resp.) is assigned

to D+
i (D−

j resp.). On each sector of B∩B+ (B∩B− resp.) the weights on the generating
disks intersecting the sector sum up to the weight on the sector. Then we obtain the
system of weights on B∩B±. Let N± be the foliated regular neighborhood of B∩B± with
transverse invariant measure corresponding to w±, and F± the corresponding singular
foliation on N±.

Since the systems of weights w+ and w− on the train tracks τ+ and τ− are projectively
attachable along τ0, we may suppose that F+ ∩ S0 = F− ∩ S0, where the transverse
invariant measures on F+ and F− are matched linearly in each component of N± ∩ S0.
Let F∗ be the singular foliation F+ ∪ F− on N∗ = N+ ∪N−.

Let f1, . . . , fl be the components of N∗ ∩ S0. Since each component of B ∩ B± is
simply connected, using Van Kampen’s theorem, we may suppose (by changing suffix if
necessary) that there exists an integer k(< l) such that

(1) the manifold obtained from the disjoint union of N+ and N− by pasting them
along ∪l

i=k+1fi is connected and simply connected and
(2) for each j (1 ≤ j ≤ k), the manifold obtained from the disjoint union of N+ and

N− by pasting them along fj ∪ (∪l
i=k+1fi) is not simply connected.

Note that the system of surfaces f1, . . . , fk represents a generator system of H1(N∗; R).
Then we have:

Claim 1. F∗ has an affine structure as a singular foliation in N∗.

Proof. Let N∗
0 be the manifold obtained from the disjoint union of N+ and N− by past-

ing them along ∪l
i=k+1fi. Since N∗

0 is simply connected, by multiplying the transverse
invariant measures on components of N+, N− by positive constant numbers if necessary,
we may suppose that the measures coincide on fk+1, . . . , fl. Hence we obtain a transverse
invariant measure on N∗

0 .

Then we can obtain a broken invariant measure on N∗ by using the surfaces f1, . . . , fk

and the above measure on N∗
0 . By the above-mentioned Proposition 1.3 of [O], we see
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that F∗ has an affine structure in N∗.

Let D3 be a crossing ball. By the definitions of F∗ and N∗, we see that each component
of ∂D3 ∩N∗ is an annulus, which is a union of four trapezoids such that two of them are
on S+ and the other two are on S−.

Figure 5.5

Claim 2. For each component A of ∂D3 ∩ N∗, F∗ ∩ A is a product foliation with each
leaf a circle.

Proof. Let e+
p , e+

q (e−r , e−s resp.) be the edges of τ+ (τ− resp.) intersecting A. Let w+
p ,

w+
q (w−

r , w−
s resp.) be the weights on e+

p , e+
q (e−r , e−s resp.) in w+ (w− resp.). We start

at a point in A∩e+
p and go around A to come back to the starting point. Then the width

of A is changed as w+
p → w−

r → w+
q → w−

s . Hence the holonomy of F∗ ∩ A along ∂A is
represented by the affine map

x →
(
w−

r

w+
p
·
w+

q

w−
r
· w

−
s

w+
q
·
w+

p

w−
s

)
x = x.

This shows that F∗ ∩A is a product foliation, with each leaf parallel to a component
of ∂A.

By Claim 2, we can insert (saddles)×I in the crossing balls to cap off the foliated
annuli, and we obtain a singular foliation F without boundary in N(B).

Claim 3. F has an affine structure as a singular foliation in N(B).

Proof. By Claim 1, F ∩N∗ has an affine structure as a singular foliation in N∗, i.e.,

[1] Let p0 : Ñ∗ → N∗ be the universal cover. Then there is a transverse invari-
ant measure µ0 on the singular foliation p−1

0 (F ∩N∗) and a homomorphism

φ0 : π1(N∗) → R+

such that, for each α ∈ π1(N∗), we have

α∗(µ0) = φ0(α) · µ0,

where α∗(µ0) is the pull back measure of µ0 with α regarded as a covering
translation.
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Note that the transverse invariant measure µ0 is not broken. Let H be the nor-
mal subgroup of π1(N∗) generated by the fundamental groups of the components of
N∗ ∩ (the bubbles) the union of the annuli. By Van-Kampen’s theorem, we see that
π1(N(B)) ∼= π1(N∗)/H. Hence we have Ñ(B)− p−1(the crossing balls) = Ñ∗/H, where
p : Ñ(B) → N(B) is the universal cover. By the proof of Claim 2, we see that for each
h ∈ H, we have φ0(h) = 1, and this shows that (1) µ0 projects to a transverse invariant
measure, say µ′, on Ñ(B)−p−1(the interior of the crossing balls), and (2) φ0 projects to
a homomorphism φ′ : π1(N∗)/H ∼= π1(N(B)) → R+. Since F ∩ (the crossing balls) is a
product foliation, and since transverse invariant measures are invariant under translations
along leaves, the measure µ′ on p−1(F − (the interior of the crossing balls)) is uniquely
extended to a transverse invariant measure on p−1(F), say µF . Then, by the above [1]
and the properties of φ0 above, we see that µF together with φ′ gives a transverse affine
structure on F in N(B).

Let L be a lamination obtained by splitting F along the singular leaves. By Claim 3,
we see that L has an affine structure as a lamination in N(B), and this completes the
proof of if part of Theorem 5.3.

For the statement of Theorem 5.4, we prepare some terminologies.

In general, let τ be a train track embedded in a surface F , and τ ′ a subset of τ such
that each component of τ ′ is a train track, and that each component of cl(τ − τ ′) is an
arc contained in the interior of an edge of τ . We call τ ′ a broken train track (obtained
from τ).

We may suppose that each fiber of N(τ ′) is a fiber of N(τ). Let w be a system of
admissible weights on τ ′, γ a simple closed curve in N(τ) which intersects each fiber of
the I-bundle N(τ) at no more than one point, i.e., γ is isotoped to be embedded in τ .

Remark. Note that since w is a system of admissible weights on τ ′, the weight w1 on an
edge e1 and the weight w2 on an edge e2 may differ even if e1 and e2 are contained in
the same edge of τ . Note also that what is required on the weights w on τ ′ is just the
switch condition at each vertex of τ ′ which is a vertex of τ .
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We say that w is compatible with γ if it satisfies the following condition.

Take a base point in the interior of an edge of τ ′ contained in γ and track γ

around. Let a1, . . . , an be the components of cl(γ − τ ′) which we pass in this
order, and let ∂−ai (∂+ai resp.) denote the end point of ai through which
we enter (leave resp.) ai. Let w±

i be the weight on the edge of τ ′ containing
∂±ai. Then we have;

(
w+

1

w−
1

) (
w+

2

w−
2

)
· · ·

(
w+

n

w−
n

)
= 1.

Remark. This definition does not depend on the choice of the base point.

Suppose w is compatible with γ. Let ei1 , . . . , eim
be the edges of τ ′ through which γ

goes successively, with starting point p ∈ ei1 .
We define a system of admissible weights a on τ ′ inductively as follows.

We set the weight on ei1 in a, say ai1 , to be an arbitrarily fixed positive real
number. Suppose we have defined the weight on eik

in a, say aik
. Then we

define the weight on eik+1 in a, say aik+1 , as below.

(1) If eik
∩ eik+1 �= ∅ (, i.e., eik

∩ eik+1 is a switch of τ), then

aik+1 = aik
.

(2) If eik
∩ eik+1 = ∅, then

aik+1 =
(
wik+1

wik

)
aik

,

where wj denotes the weight on the edge ej in w.

Finally, we set the weight on ej (j �= i1, . . . , im) in a to be equal to 0.

We say that a is (a system of weights) induced from w to represent (the simple closed
curve) γ.

Remark. The system of weights a is not uniquely determined by γ. In fact, it depends on
the choice of the starting point p, and the weight on the edge ei1 containing the starting
point. However, since w is compatible with γ, it is easy to see that the systems of weights
are mutually projectively equivalent, i.e., if a and a′ are induced from w to represent γ,
then there is a constant real number c > 0 such that a = ca′.
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Let γ1, . . . , γp be mutually disjoint simple closed curves in F such that γ1 ∪ · · · ∪ γp is
carried by τ . We say that w is positively generated by γ1, . . . , γp, if

(1) for each i (i = 1, . . . , p), w is compatible with γi, and if
(2) there are systems of weights a1, . . . ,ap induced from w to represent γ1, . . . , γp

such that w = Σp
i=1ai.

We return to our situation. That is, B is a branched surface in standard position with
respect to a diagram E of a link L, and τ± the train track B ∩ S±. Let τ0 = τ+ ∩ S0(=
τ− ∩ S0). Then we define a subset τ ′ of τ0 as follows.

In the interior of each edge which is not incident to a bubble, take a point,
called a break point. Then remove from τ0;

(1) sufficiently small neighborhoods of the break points and
(2) every edge of τ0 which has both of its end points on the bubbles.

Note that τ ′ can be regarded as a broken train track obtained from τ+ (τ− resp.).
Then we have:

Theorem 5.4. Let B be a branched surface in standard position with respect to a diagram
E of a link L, and let τ±, τ0, τ ′ be as above. Suppose B fully carries a lamination L
such that L is affine in N(B), then

(*) there exists a system of admissible weights w′ on the broken train track τ ′ such
that there exist systems of generating disks {D+

1 , . . . , D+
m} and {D−

1 , . . . , D−
n } for B∩B+

and B ∩B− respectively which satisfies the following.

(1) w′ is positively generated by ∂D+
1 , . . . , ∂D+

m with τ ′ regarded as a broken train
track obtained from τ+ and

(2) w′ is positively generated by ∂D−
1 , . . . , ∂D−

n with τ ′ regarded as a broken train
track obtained from τ−.

Conversely, if (*) holds, then there exist a branched surface B̂ and a lamination L̂
fully carried by B̂ such that B̂ is obtained by splitting B in Int (B+)∪ Int (B−) and such
that L̂ is an affine lamination in N(B̂) with the affine structure given by w′.

Remark. In the latter half of Theorem 5.4, we note that B̂ ∩ S± = τ± = B ∩ S±, since
the splitting is performed in Int (B+) ∪ Int (B−), and the lamination L̂ is fully carried
also by B.

Proof of the former half of Theorem 5.4. Let S1, . . . , Sk be surfaces each of which is
properly embedded in N(B) so that they are in general position and together represent
a basis for H1(N(B); R). Since B is a deformation retract of N(B), we may suppose
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that S1, . . . , Sk are unions of I-fibers of the I-bundle N(B). Let K1, . . . ,Kk be the 1-
complexes in B which are the images of S1, . . . , Sk by the projection map N(B) → B.
We may suppose that the 1-complexes K1, . . . ,Kk are in general position in B and that
∪Ki intersects the projection 2-sphere S in finitely many transverse points away from
the bubbles.

Suppose B fully carries a lamination L which is affine in N(B). By Proposition 1.3
of [O], there exists a broken invariant measure ((σ1, . . . , σk),wb) on B for S1, . . . , Sk

giving the affine structure. Recall that, by the note immediately after the definition
of transverse affine structure, we can obtain a measured lamination from a system of
admissible weights on a branched surface.

Let τ∗ be the broken train track obtained from τ0 by removing a sufficiently small
regular neighborhood of (∪Ki)∩ S0. Let w∗ denote the system of admissible weights on
τ∗ induced from wb.

Let L± = L∩B±. By Proposition 5.1, there is a system of generating disks {D+
1 , . . . , D+

m}
({D−

1 , . . . , D−
n } resp.) for B ∩B+ (B ∩B− resp.) as below.

Each leaf of L+ (L− resp.) is isotopic to some D+
i (D−

j resp.) in the I-bundle
N(B ∩B+) (N(B ∩B−) resp.) by a fiber preserving isotopy.

Let D+
i (D−

j resp.) be the union of the leaves of L+ (L− resp.) which are isotopic to
D+

i (D−
j resp.) by a fiber preserving ambient isotopy in N(B ∩B+) (N(B ∩B−) resp.).

Let Q be a component of D+
i − (∪Si) (D−

j − (∪Si) resp.), and D+
i (Q) (D−

j (Q) resp.)
be the union of the components of D+

i − (∪Si) (D−
j − (∪Si) resp.) which are isotopic

to Q by a fiber preserving ambient isotopy in N(B ∩ B+) (N(B ∩ B−) resp.). Then by
Proposition 5.1, we see that for each fiber J of N(B ∩ B+) (N(B ∩ B−) resp.) with
J ∩D+

i (Q) �= ∅ (J ∩D−
j (Q) �= ∅ resp.) the intersection J ∩D+

i (Q) (J ∩D−
j (Q) resp.) is

a closed subset of J .
According to this observation, let
m+

i (Q) =
max{µb(J)|J is a subinterval of a fiber of N(B) such that ∂J ⊂ D+

i and J ∩Q �= ∅},
m−

j (Q) =
max{µb(J)|J is a subinterval of a fiber of N(B) such that ∂J ⊂ D−

j and J ∩Q �= ∅},
where µb is the broken invariant measure determined by the system of weights wb.

That is, m+
i (Q) (m−

j (Q) resp.) is the “thickness”of D+
i (D−

j resp.) in Q. Since L−(∪Si)
is the support of the measure, we see that m+

i (Q) > 0 (m−
j (Q) > 0 resp.).

Note that Q ∩ τ∗ is a union of edges of τ∗. Then let c+
i be a system of admissible

weights on τ∗ obtained from D+
i as follows.
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(1) If e is an edge of τ∗ contained in a component Q of D+
i − (∪Sl), then

we assign m+
i (Q) to e.

(2) If e is an edge of τ∗ not contained in a component of D+
i − (∪Sl), then

we assign 0 to e.

We can analogously define c−j .
Then we obviously have the equations below.

[2] w∗ =
∑

c+
i =

∑
c−j

By definition, it is easy to see that each ∂D+
i (∂D−

j resp.) is compatible with w∗, and
that c+

i (c−j resp.) is a system of weights induced from w to represent the simple closed
curve ∂D+

i (∂D−
j resp.).

Hence, by the above equation [2], we see that

w∗ is positively generated by ∂D+
1 , . . . , ∂D+

m (∂D−
1 , . . . , ∂D−

n resp.) with τ∗

regarded as a broken train track obtained from τ+ (τ− resp.).

In general, for a system of admissible weights v on τ∗, we define a system of admissible
weights, denoted by b(v), on τ ′ as follows.

(1) Let e be an edge of τ0 which is not incident to a bubble. Then there is a break
point in the interior of e, and e is separated into two edges, say e1, e2, in τ ′.

In this case, let f1, . . . , fq (q ≥ 1) be the closures of the components of e−(∪Kl)
which are located in e in this order, where f1 contains the endpoint ∂e1 ∩ ∂e and
fq contains the endpoint ∂e2 ∩ ∂e. Then we set the weight on e1 (e2 resp.) in
b(v) to be equal to that on f1 (fq resp.) in v.

(2) Let e be an edge of τ0 such that one endpoint of e is contained in a bubble and
the other endpoint is a switch. (Hence e is embedded in τ ′.)

In this case, let f1, . . . , fq (q ≥ 1) be the closures of the components of e−(∪Ki)
which are located in e in this order so that f1 is incident to the bubble and fq is
incident to the switch. Then we let the weight on e be equal to the weight on fq

in v.

Then we let w′ = b(w∗), a+
i = b(c+

i ) and a−
j = b(c−j ).

Then we obviously have the equation below.

[3] w′ =
∑

a+
i =

∑
a−

j
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Claim 1. For each D+
i , D−

j above, w′ is compatible with ∂D+
i , ∂D−

j and a+
i (a−

j resp.)
is induced from w′ to represent ∂D+

i (∂D−
j resp.).

Proof. Since the argument is the same, we show this for ∂D+
i .

Note that ∂D+
i is embedded in τ+. Let g be the closure of a component of ∂D+

i − τ ′.
Then let e1, e2 be the edges of τ ′ which are incident to g. Let e = e1 ∪ g ∪ e2. Then
e is an edge of τ+. Let f1, . . . , fq (q ≥ 1) be the closures of the components of e −
((∪Kl) ∪ (the interiors of the crossing balls) which are located in e in this order, where
f1 contains the endpoint ∂e1 ∩ ∂e and fq contains the endpoint ∂e2 ∩ ∂e. Let v1, . . . , vq

be the weights on f1, . . . , fq respectively in w∗. Then the ratio of the affine map induced
by w∗ when we track e from f1 to fq is (v2/v1)(v3/v2) · · · (vq/vq−1) = vq/v1. On the
other hand, the ratio of the affine map induced by w′ when we track e from e1 to e2 is
vq/v1, which is exactly the same as above. It is easy to see that this implies Claim 1
since ∂D+

i is compatible with w∗.

Claim 1 together with above [3] implies the former half of Theorem 5.4

Proof of the latter half of Theorem 5.4. Suppose there exists a system of admissible
weights w′ on the broken train track τ ′, and systems of generating disks {D+

1 , . . . , D+
m}

and {D−
1 , . . . , D−

n } for B ∩ B+ and B ∩ B− respectively which satisfies condition (*) of
Theorem 5.4.

Let τ ′′ be the train track contained in τ0 such that τ ′′ = τ ′∪(the edges of τ0 each of
whose endpoints is contained in bubbles).

Then let w′′ be the system of weights on τ ′′ obtained as below.

(1) If e is an edge of τ ′′ which is an edge of τ ′, then we assign the weight on e in w′

to e.
(2) If e is an edge of τ ′′ which is not an edge of τ ′, then we assign 1 to e.

It is easy to see that w′′ is positively generated by ∂D+
1 , . . . , ∂D+

m with τ ′′ regarded as
a subset of τ+, and that w′′ is positively generated by ∂D−

1 , . . . , ∂D−
n with τ ′′ regarded

as a subset of τ−.

We recall the construction of the foliated neighborhood Nw′′(τ ′′) with a transverse
invariant measure corresponding to w′′. Let e′′1 , · · · , e′′h be the edges of τ ′′, and w′′

1 , · · · , w′′
h

the weights on these edges in w′′. Then Nw′′(τ ′′) is the union of I-bundles e′′i × [0, w′′
i ]

foliated by the leaves of the form e′′i ×(a point). Then N(τ ′′) is foliated by the leaves which
are unions of the leaves of the above form. Note that this foliation has singular leaves
which intersect singular points in ∂Nw′′(τ ′′). Let t be a vertex of τ ′′ of valency 1. Then
the subarc of ∂N(τ ′′) corresponding to t× [0, w′′

i ] is called a terminal boundary of N(τ ′).
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See Figure 5.6. Then we connect terminal boundaries of Nw′′(τ ′′) in neighborhoods of
the break points and components of τ± ∩ (bubbles) by using fibered “trapezoids”as in
Figure 5.6 so that the transverse invariant measures are matched by affine maps. Let
N1 be the resulting 2-complex with a singular foliation F1. (Note that N1 is a “fibered
neighborhood”of τ+ ∪ τ−.)

Figure 5.6

Since F1 is obtained from the measured singular foliation on Nw′′(τ ′′) by pasting
the measures by affine maps, we can show, by similar arguments as in the proof of
Proposition 1.3 of [O], that F1 admits an affine structure, i.e.,

[4] Let p1 : Ñ1 → N1 be the universal cover. There exists a transverse invariant
measure µ̃1 on p−1

1 (F1), and a homomorphism φ̃1 : π1(N1) → R+ such that
for each α ∈ π1(N1) we have:

α∗(µ̃1) = φ̃1(α) · µ̃1.

We omit the proof.

Let D3 be a crossing ball. By the definition of N1, we see that each component of
∂D3 ∩ N1 is an annulus, which is a union of four trapezoids such that two of them are
on S+ and the other two are on S−.

Figure 5.7

Claim 1. For each component A of ∂D3 ∩ N1, F1 ∩ A is a product foliation with each
leaf a circle.

Proof. Let e′′p , e′′q , e′′r , e′′s be the edges of τ ′′ intersecting A at their endpoints. We start
at the point in A ∩ e′′p and go around A to come back to the starting point. Then the
width of A is changed as w′′

p → w′′
r → w′′

q → w′′
s , where w′′

i denotes the weight on e′′i in
w′′. Hence the holonomy of F1 ∩A along ∂A is represented by the affine map

x →
(
w′′

r

w′′
p

·
w′′

q

w′′
r

· w
′′
s

w′′
q

·
w′′

p

w′′
s

)
x = x.

This shows that F1 ∩A is a product foliation, with each leaf parallel to a component
of ∂A.
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By Claim 1, we can insert (saddles) × I in the crossing balls to cap off the foliated
annuli, and we obtain a 3-complex, say N2, with a “singular foliation”, say F2. Let
N±

2 = N2 ∩ S±(= N1 ∩ S±), and F±
2 the foliation on N±

2 obtained by restricting F2 on
N±

2 .
Since w′′ is positively generated by {∂D+

1 , . . . , ∂D+
m} ({∂D−

1 , . . . , ∂D−
n } resp.), we see

that each non-singular leaf of F+
2 (F−

2 resp.) is compact and parallel to some ∂D+
i (∂D−

j

resp.) in N+
2 (N−

2 resp.). Let A+
i (A−

j resp.) be the closure of the union of non-singular
leaves of F+

2 (F−
2 resp.) that are parallel to ∂D+

i (∂D−
j resp.) in N+

2 (N−
2 resp.). Let N ′

2

be a 3-manifold obtained from a disjoint union of N2, N+
2 × I and N−

2 × I by identifying
N+

2 , N−
2 with N+

2 × {0}, N−
2 × {0} respectively. Then F2 and the product foliations

F+
2 × I, F−

2 × I are joined to give a foliation, say F ′
2, on N ′

2. Let A+
i
′ (A−

j
′ resp.) be the

annulus in ∂N ′
2 corresponding to A+

i × {1} (A−
j × {1} resp.). Let N̂ be the 3-manifold

obtained from a disjoint union of D+
1 × I, . . . ,D+

m × I, D−
1 × I, . . . , D−

n × I and N ′
2 by

identifying ∂D+
1 ×I, . . . , ∂D+

m×I, ∂D−
1 ×I, . . . , ∂D−

n ×I and A+
1
′, . . . , A+

m
′, A−

1
′, . . . , A−

n
′

respectively. Here we may suppose that the foliation F ′
2 and the product foliations on

D+
1 × I, . . . ,D+

m × I, D−
1 × I, . . . , D−

n × I are matched to give a foliation, say F̂ , on N̂ .

Claim 2. F̂ admits an affine structure.

Proof. Let p̂ : ˜̂
N → N̂ be the universal cover. Let N ′

1 = cl(N ′
2−( the interior of the crossing balls)).

Let H be the normal subgroup of π1(N ′
1) generated by the fundamental groups of

A+
1
′, . . . , A+

m
′, A−

1
′, . . . , A−

n
′ and the fundamental groups of the annuli N1∩( the crossing balls).

By applying Van-Kampen’s Theorem successively, we see that π1(N̂) ∼= π1(N ′
1)/H. By

Claim 1 and the fact that the restrictions of F ′
2 on A+

1
′, . . . , A+

m
′, A−

1
′, . . . , A−

n
′ and the

annuli N ′
2∩(the bubbles) are product foliations, φ̃1(h) = 1 for each h ∈ H. (For the

definition of φ̃1 and µ̃1, see [4] above.) This shows that (1) µ̃1 projects to a transverse
invariant measure, say µ′, on p̂−1(N ′

1), and that (2) φ̃1 projects to a homomorphism
φ̂ : π1(N ′

1)/H ∼= π1(N̂) → R+. Since the restriction of F̂ on each component of N̂ −N ′
1

is a product foliation of the form (open disk)×I, the measure µ′ is uniquely extended to a

transverse invariant measure, say µ̂ on ˜̂
N so that µ̂ is invariant under translations along

leaves. Then, by the above [4] and the properties of φ̃1 above, we see that µ̂ together
with φ̂ gives a transverse affine structure on F̂ . This completes the proof of Claim 2.

We note that N̂ is embedded in the exterior E(L) of the link, that is, N̂ ∩ (S+∪S−) =
N1. We also note that N̂ has an I-bundle structure which is an extension of an I-bundle
structure on N1. By collapsing each fiber of the I-bundle structure on N̂ to a point, we
obtain a branched surface with non-generic branch locus. Then we slightly perturb it to
obtain a branched surface B̂ in E(L). Note that B̂ is obtained from B by splitting in
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Int (B+) ∪ Int (B−). Let L be a lamination obtained by splitting F̂ along the singular
leaves. By Claim 2, we see that L admits an affine structure as a lamination in N̂ . Since
B ∩B+ (B ∩B− resp.) is a pinching of D+

1 , . . . D+
m (D−

1 , . . . .D−
n resp.), we see that L is

fully carried by B.

This completes the proof of the latter half of Theorem 5.4.

§6 Examples

In this section, we use the notations L, E, S±, B±, B and τ± as in Section 2.

Figure 6.1a , F igure 6.1bcde , F igure 6.1f

Example 6.1. Let L be the figure eight knot, and E an alternating diagram of L as
in Figure 6.1 (a). In the following, we show that E(L) contains an essential branched
surface which fully carries an affine lamination. We note that the lamination is actually
obtained from a stable lamination of the pseudo-Anosov monodromy of the surface bundle
structure on E(L) by taking a mapping torus, and hence does not admit a non-trivial
transverse measure. For a proof of this fact, see Appendix D.

By Figure 6.1 (b) and (c), we see that there exists a branched surface B in E(L) which
is in standard position with respect to E such that the systems of generating disks for
B ∩ B+ (B ∩ B− resp.) consists of three disks D+

1 , D+
2 , D+

3 (D−
1 , D−

2 , D−
3 resp.) as in

Figure 6.1 (d)(Figure 6.1 (e) resp.), where we denote ∂D±
i by =±i . To be precise, the disks

are pinched as follows to yield B; D±
1 , D±

2 and D±
3 are mutually parallel in B±, and D±

1

and D±
2 (D±

2 and D±
3 resp.) are pinched to give rise to a branch locus α± (β± resp.) in

B ∩ B±, where α+ and β+ (α− and β− resp.) intersect in one point and α+ ∪ α− and
β+ ∪ β− are two branch loci of B.

It is a routine work to see that B satisfies the six conditions of nice branched surface
in section 4, and hence B satisfies the conditions (1), (2) and (3) of the definition of
essential branched surface by Theorem 4.1.

Now we apply Method 1 in Appendix B to show that B has no disk of contact, is
Reebless and does not carry a closed surface. In particular, B satisfies the condition (4)
of the definition of essential branched surface.

It is directly observed in Figure 6.1 (b) that B has exactly two sectors Sa and Sb with
two mutually intersecting branch loci α+ ∪ α− and β+ ∪ β−.

Let si (i = 1, · · · , 4) be the switches of τ± as in Figure 6.1 (c), i.e., s1 and s2 (s3 and
s4 resp.) correspond to ∂α+ = ∂α− (∂β+ = ∂β− resp.) Assign weights wa and wb to the
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sectors Sa and Sb. Then by considering the switch condition in a neighborhood of each
si, we have the following system of equations;




wa + wb = wb

wa + wb = wa

wa + wb = wb

wa + wb = wa

This system of equations can only have the trivial solution wa = wb = 0. Hence by
Method 1, we see that B does not carry a closed surface and is Reebless.

It is already proved by Theorem 4.1 that B does not have a disk of contact, but we
also give another proof of this by using Method 1 in Appendix B. Suppose B has a disk
of contact, i.e., branch locus α+ ∪α− or β+ ∪ β− spans a disk of contact. In these cases,
we respectively have the following systems of equations;




wa + wb + 1 = wb

wa + wb + 1 = wa

wa + wb = wb

wa + wb = wa

,




wa + wb = wb

wa + wb = wa

wa + wb + 1 = wb

wa + wb + 1 = wa

It is easy to see that both systems of equations do not have any solution. Hence by
Method 1, we see that B does not have a disk of contact.

Finally, we show by using Theorem 5.3 that B fully carries an affine lamination. (Note
that B ∩B+, B ∩B− are simply connected.) Let b+

i (i = 1, 2, 3) (b−
j (j = 1, 2, 3) resp.)

be the system of admissible weights on τ+ (τ− resp.) representing =+i (=−j resp.). Let α+
i ,

α−
j (i, j = 1, 2, 3) be positive real numbers and we put

w+ = α+
1 b+

1 + α+
2 b+

2 + α+
3 b+

3 ,

w− = α−
1 b−

1 + α−
2 b−

2 + α−
3 b−

3 .

Let F1, F2, F3, F4, F5, F6 be the components of τ0(= τ± ∩ S0) as in Figure 6.1 (f).
Suppose that w+, w− are projectively attachable along τ0. Then on F1 we have the
following equation.

α+
3

α−
2

=
α+

1 + α+
2

α−
3

=
α+

1 + α+
2 + α+

3

α−
2 + α−

3

.

Here we note that the second equality follows from the first equality, and hence it is
enough to consider the first one. It is directly seen that the same phenomena hold for
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the equations obtained from F2, F3 and F4. Then we have the following system of
equations. 



α+
3

α−
2

=
α+

1 + α+
2

α−
3

α+
3

α−
1 + α−

2

=
α+

2

α−
3

α+
1

α−
2

=
α+

2 + α+
3

α−
1

α+
1

α−
2 + α−

3

=
α+

2

α−
1

.

Here we note that since F5 (F6 resp.) consists of one edge, it is obvious that w+ and w−

are projectively equivalent on F5 and F6 for any positive α+
i , α−

j (i, j = 1, 2, 3).
It is easy to see that the non-trivial positive solutions of the above system is of the

following form.

(α+
1 , α+

2 , α+
3 , α−

1 , α−
2 , α−

3 ) = (
1 +

√
5

2
c, c,

1 +
√

5
2

c,
1 +

√
5

2
d, d,

1 +
√

5
2

d),

where c, d are arbitrarily fixed positive real numbers. Hence, by Theorem 5.3, we see that
B fully carries a lamination which is affine in N(B). Note that for any pair of positive
numbers c, d, the resulting affine structures are projectively isomorphic. This fact can
be confirmed as in the following. Recall the construction of the affine structure in “Proof
of if part of Theorem 5.3. ”That is, we first construct a foliation F+ (F− resp.) on N+

(N− resp.) with transverse invariant measure corresponding to
( 1+

√
5

2 c, c, 1+
√

5
2 c) (( 1+

√
5

2 d, d, 1+
√

5
2 d) resp.)

Since B+, B− are connected, and simply connected, the manifold, say N6, obtained
from N+ and N− by pasting them along f6 is simply connected. Hence according to
the construction, we multiply the transverse measure on F− by a constant number (in
fact, this is c/d) and give a transverse measure on the foliation F+ ∪ F− in N6. The
construction shows that this measure is used to give the affine structure. Here we note
that the multiplication by c/d results in

(α+
1 , α+

2 , α+
3 , α−

1 , α−
2 , α−

3 ) = (
1 +

√
5

2
c, c,

1 +
√

5
2

c,
1 +

√
5

2
c, c,

1 +
√

5
2

c).

This shows that the resulting affine structures are projectively isomorphic.

Example 6.2. Let L be the knot 61 of Rolfsen’s table [Ro], and E an alternating diagram
of L as in Figure 6.2 (a). We here give an example of a branched surface which carries
non projectively-isomorphic one-parameter family of affine laminations.
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Figure 6.2a , F igure 6.2bcde , F igure 6.2f

By Figure 6.2 (b), we see that there exists a branched surface B in E(L) which is in
standard position with respect to E such that the generating system of disks for B ∩B+

(B∩B− resp.) consists of disks D+
1 , D+

2 , D+
3 , D+

4 (D−
1 , D−

2 , D−
3 resp.), where =±i = ∂D±

i

appears as in Figure 6.2 (d), (e) and the branch loci of B∩B± consist of pairwise disjoint
arcs. We note that B is isotopic to one as obtained in [B3] and hence is essential in E(L).
For a proof of this fact, see Appendix E. However, we also note that B does not satisfy
the condition (1) of nice branched surface in section 4 (indeed, τ+ is not connected).
This shows that the conditions of Theorem 4.1 are too strong for branched surfaces to
be essential. We anyway show that B has no disk of contact, is Reebless and carries no
closed surface by using Method 1 in Appendix B. Actually it is easily confirmed that B

has only one sector. Hence by Fact 1 in Section 4, we obtain the above conclusion.
Finally we show by using Theorem 5.3, that B fully carries an affine lamination. Let

b+
i (i = 1, 2, 3, 4) (b−

j (j = 1, 2, 3) resp.) be the system of admissible weights on τ+ (τ−
resp.) representing =+i (=−j resp.). Let α+

i (i = 1, 2, 3, 4), α−
j (i, j = 1, 2, 3) be positive

real numbers and we put

w+ = α+
1 b+

1 + α+
2 b+

2 + α+
3 b+

3 + α+
4 b+

4 ,

w− = α−
1 b−

1 + α−
2 b−

2 + α−
3 b−

3 .

Let F1, F2, F3, F4 be the components of τ0(= τ±∩S0) as in Figure 6.2 (f). Suppose that
w+, w− are projectively attachable along τ0. Then, as in Example 6.1, it is enough to
consider the following system of equations obtained from F1, F2, F3, F4.




α+
2

α−
2

=
α+

1

α−
1

α+
1

α−
2

=
α+

2

α−
3

α+
3

α−
1

=
α+

4

α−
2

α+
3

α−
2

=
α+

4

α−
3

.

We consider the following 1-parameter family of solutions of the above equations.

w(t) = (α+
1 , α+

2 , α+
3 , α+

4 , α−
1 , α−

2 , α−
3 ) = (t, 1, t, 1, t, 1, 1/t)
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We note that if t �= t′, then w(t) and w(t′) restricted on B ∩B− are not projectively
equivalent. Hence we see that w(t) and w(t′) give projectively different transverse in-
variant measures on the universal cover B̃. This shows that B fully carries mutually non
projectively-isomorphic one-parameter family of affine laminations.

Appendix A

Proposition A. Let B be a branched surface in a 3-manifold M . Then B carries a
Reeb lamination if and only if there is a Reeb branched surface carried by B.

Proof. The proof of “if”part is clear. Hence we give a proof of “only if”part. Suppose
that there is a Reeb lamination LR carried by B. Without loss of generality, we may
suppose that LR consists of two leaves, T and R, where T is a torus leaf and R is a
non-compact leaf homeomorphic to R2. Let V be the solid torus bounded by T such
that V ⊃ R. We may suppose that T ⊂ Int N(B). Then we can take a meridian disk
D of V such that there exists a sufficiently small regular neighborhood N(∂D) of ∂D in
D such that N(∂D) is contained in N(B), that N(∂D) intersects R transversely, and
N(∂D) is a union of subintervals of I-fibers of N(B). We note that N(∂D)∩R consists
of simple closed curves which are essential in N(∂D). Let A be an annulus in N(∂D)
such that A∩R = ∂A, and let A be the annulus in R such that ∂A = ∂A. Since N(∂D)
is sufficiently small, we see that A ∩ D = ∂A, and T ∪ (A ∪ A) bounds a 3-manifold,
say N , homeomorphic to T × I, which is contained in N(B). Then it is easy to see that
p(N ∪ R) is a Reeb branched surface carried by B, where p : N(B) → B is the natural
projection. �

Appendix B(Non existence of disk of

contact, and Reeb branched surface)

Here, we discuss some methods for proving that B does not carry a disk of contact, a
Reeb branched surface or a boundary parallel torus.

Method 1. We note that the following idea was used by the first author in [B].

Recall that if the system of the switch equations for B does not have any non-trivial
solution, then B does not carry a compact surface properly embedded in M , and hence
B carries neither a boundary parallel torus nor a Reeb branched surface. Remember that
a Reeb branched surface has a sector which forms a smooth torus.

In fact, in (2) of the Proof of Theorem in [B], the following is proved.
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Fact 1. If B−(the branch loci) is connected (, i.e., B consists of exactly one sector),
then any system of equations obtained as above does not have a non-negative integer
solution, hence, B does not carry a compact surface.

Similar arguments work for disks of contact as below.

Let C be a branch locus of B, and AC the component of ∂vN(B) corresponding to C.
Note that AC is an annulus. Then we modify the switch equations at C as follows.

Recall that the branch loci of B is an immersed 1-manifold with finitely
many transverse self intersection. Then we remove the intersection points
from the branch locus C to obtain a system of mutually disjoint 1-manifolds
in M . Let ρ be one of them, and p a point in Int (ρ). Then there is a regular
neighborhood Dp of p such that Dp ∩ ρ is an arc properly embedded in Dp

and that B ∩ Dp consists of three half-disks, say ∆1, ∆2, ∆3, with sharing
Dp ∩ ρ as their diameters. Here we may suppose that ∆1 ∪ ∆2 and ∆1 ∪ ∆3

are smooth disks. Let Si, Sj , Sk be the sectors which contains ∆1, ∆2, ∆3

respectively. (Note that two or three of Si, Sj , Sk might coincide.)
We consider the following equation.

wi = wj + wk + 1.

See Figure B1. Now we obtain a new system of equations for weights. In Appendix B,
we call this system the second system of equation associated to C. Let X be the set of the
systems of weights satisfying the second system of equations associated to C. Let F be
the set of the fiber preserving isotopy classes of disjoint unions of surfaces carried by B

such that precisely one component has a single boundary loop which forms a core circle of
AC . Obviously there is a 1 to 1 correspondence between X and F . Hence non-existence
of solutions for the second system of equations associated to C implies non-existence of
a disk of contact.

Figure B1

Method 2. Perhaps the following is well-known to experts (see Remark 1.3 1) of [GO]).

Fact 2. Suppose that B is a closed branched surface such that cl(M − N(B)) is irre-
ducible, ∂hN(B) is incompressible in cl(M −N(B)), and that there is a lamination fully
carried by B. If B carries a Reeb branched surface, then either B contains a disk of
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contact, or a component X of M − N(B) is (disk)×I with X ∩ ∂vN(B) = ∂(disk) × I,
and X ∩ ∂hN(B) = (disk) × ∂I,

Proof. Suppose that B carries a Reeb branched surface. Then B also carries a Reeb
lamination LR = T ∪ R, where T is a torus, and R is a union of non-compact leaves.
Without loss of generality, we may suppose that R consists of one leaf. Let V be the
solid torus in M bounded by T such that V ⊃ R. Let B′ be the subset of M obtained
from B by removing all sectors which do not carry LR. It is easy to see that B′ is a
branched surface such that LR is fully carried by B′. Then we may suppose (by splitting
LR if necessary) that ∂hN(B′) ⊂ LR, and hence ∂(∂hN(B′)) ⊂ LR. Since every point of
T is an accumulation point of an infinite sequence of points of R, any sector of B′ carries
R if it carries T . Since such sectors carry at least two portions of leaves, we do not need
to split the toral leaf T . Let R′ be the union of non-compact leaves obtained from R by
a possible splitting operation.

Claim. There is a component of ∂(∂hN(B′)) which is contained in R′.

Proof. Assume for a contradiction that no component of ∂(∂hN(B′)) is contained in R′.
Then ∂hN(B′) ⊂ T and R′ ⊂ Int N(B′).

Subclaim. V ⊂ N(B′).

Proof. Suppose for a contradiction Int V ∩ (M −N(B′)) �= ∅. Since R′ is carries by B′,
we see that Int V ∩ Int N(B′) �= ∅. Since Int V is arcwise connected, we can take a path
α which joins a point in Int V ∩ Int N(B′) to a point in Int V ∩ (M − N(B′)). Since
∂N(B′) is separating in M , we see that ∂N(B′)∩ (Int α) �= ∅. Since ∂hN(B′) ⊂ T = ∂V

and ∂N(B′) = ∂vN(B′) ∪ ∂hN(B′), we see that Int α ∩ Int ∂vN(B′) �= ∅, hence that
Int V ∩ Int ∂vN(B′) �= ∅. Let Q be the component of V ∩ ∂vN(B′) which contains a
point of Int α ∩ Int ∂vN(B′). Since V is a closed set, we see that Q is also a closed
set. We note that ∂Q ⊂ T = ∂V . Since Int ∂vN(B′) ∩ T = ∅, we see that Q is a
component of ∂vN(B′), where (Q ∩ ∂hN(B)) ⊂ T . Since R′(⊂ Int V ) accumulates to T

and Int Q ⊂ Int V , we see that R′∩Q �= ∅, contradicting the fact that R′∩∂vN(B′) �= ∅.

By Subclaim, we see that the solid torus V is embedded in the I-bundle N(B′), where
∂V = T is transverse to the fibers. This implies that V admits an I-bundle structure
such that ∂V = T is transverse to the fibers. However this is impossible since the base
space of the I-bundle is a closed surface which is a deformation retract of V , and since V

does not have a homotopy type of a closed surface. This completes the proof of Claim.

By Claim, we can take a component = of ∂(∂hN(B′)) which is innermost in R′, and
let ∆′ be the disk in R′ bounded by =. If Int ∆′ ⊂ Int N(B′), then a small isotopy of
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∆′ gives a disk of contact for N(B′). It is easy to see that this disk survives when we
recover N(B) from N(B′), and this shows that there is a disk of contact in N(B). If
Int ∆′ �⊂ Int N(B′), then ∆′ is a component of ∂hN(B′). We can recover B from N(B′)
by attaching the removed sectors and collapsing the I-fibers of N(B′) to points. Since
∂vN(B′) is disjoint from the vertical boundary of N(B) incident to the attached sectors,
a small neighborhood of ∂∆′ in ∆′, denoted by N(∂∆′,∆′), survives in ∂hN(B).

Let ∆ be the component of ∂hN(B) such that ∆ ⊃ N(∂∆′,∆′). Then a component
of ∂∆ is ∂∆′, and hence the component of ∂∆ is contractible in N(B).

Suppose that ∆ is a disk. Since ∂hN(B) is incompressible in cl(M −N(B)), and since
cl(M − N(B)) is irreducible, we see that the component of cl(M − N(B)) containing
∆ is of the form (disk) × I. Suppose that ∆ is not a disk, i.e., π1(∆) �= {1}. Then ∆
is compressible in N(B). Now we apply the argument of the proof of Proposition 4.5
of [GO]. That is, we first recall that B fully carries a lamination, say λ. Then, by
splitting finitely many leaves of λ if necessary, we may suppose that λ ⊃ ∂hN(B). Then
N(B) − λ has a structure of an open I-bundle. Since an I-bundle over a surface does
not admit an essential disk, we can deform the compressing disk for ∆ by an isotopy
relative to the boundary to a disk, say E, contained in λ. Since E is obtained from
a compressing disk, we see that (Int E)∩∂(∂hN(B)) �= ∅. Let =E be a component of
(Int E)∩∂(∂hN(B)) which is innermost in E, and ∆E the disk in E bounded by =E .
Then, by the above arguments, we see that either ∆E represents a disk of contact (if
Int ∆E ⊂ Int N(B)) or a component of M − Int N(B), say X, is of the form (disk)×I

with X ∩ ∂vN(B) = ∂(disk) × I (if ∆E ⊂ ∂hN(B)).

Method 3. We note that the following fact is used in the proof of Lemma 4.3 of [GO]
and the proof of it is not given there. The fact implies that it is enough to check finitely
many systems of admissible weights to find a torus bounding a Reeb branched surface in
a given branched surface.

Fact 3. Let B be a branched surface in a 3-manifold M . Suppose that B has no disk
of contact and that there exists a torus which bounds a Reeb branched surface carried by
B. Let T be such a torus and V the solid torus such that ∂V = T and that V contains
the Reeb branched surface. Then no I-fiber of N(B) ∩ V is an arc whose endpoints are
contained in T . In particular, if w = (w1, . . . , wk) is the system of admissible weights on
B which represents T (hence, each wi is a non-negative integer), then each wi is equal
to or less than 2.

Proof. Suppose for a contradiction that there is an I-fiber, say J , of N(B) ∩ V such
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that ∂J ⊂ T . Let LR = T ∪ R and B′ be as in the proof of above-mentioned Fact 2.
That is, LR is a Reeb lamination carried by the Reeb branched surface contained in V ,
and B′ is the closed branched surface obtained from B by removing all sectors which do
not carry LR. As in the proof of Fact 2, we may suppose that ∂hN(B′) ⊂ L′

R, where
L′

R = T ∪R′ is a lamination obtained from LR by applying possible splitting operations
on the non-compact leaves R. Note that N(B′) ∩ V forms an I-bundle. Since B has no
disk of contact, we immediately have the following claim.

Claim 1. Let = be a component of ∂(∂hN(B′)) ∩ R′ which is innermost in R′, and ∆
the disk in R′ bounded by =. Then ∆ is a component of ∂hN(B′).

Then we have the following.

Claim 2. The components of ∂(∂hN(B′)) are not nested in R′, i.e., there does not exist
second innermost component of ∂(∂hN(B′)).

Proof. Suppose for a contradiction that there exists a second innermost component = of
∂(∂hN(B′)) ∩R′. Let ∆ be the disk in R′ bounded by =. By above-mentioned Claim 1,
we see that the interior of a small neighborhood of ∂∆ in ∆ is contained in Int N(B′).
Hence by moving ∆ by a small isotopy, we can obtain a disk of contact in B′. It is easy
to see that the disk of contact survives in B. a contradiction.

By Claims 1 and 2, we see that each component of ∂hN(B′) ∩ Int V is a disk, hence
each component of V ∩ ∂N(B′) is a 2-sphere which contains exactly one component of
∂vN(B′). Since V is irreducible, this gives the following.

Claim 3. Each component of cl(V − N(B′)) is homeomorphic to (disk) × I, where
((disk) × I) ∩ ∂hN(B′) = (disk) × ∂I and ((disk) × I) ∩ ∂vN(B′) = ∂(disk) × I.

By Claim 3, we can extend the I-bundle structure of N(B′) ∩ V to a codimension 2
foliation, say Σ, of the solid torus V transverse to ∂V . Recall that ∂hN(B′) ⊂ L′

R. Let
=1, . . . , =p be the non-compact leaves of L′

R which intersect ∂hN(B′). Let N1, . . . , Nq be
the metric completions of the components of V −(T ∪=1∪· · ·∪=p). By the definition of Σ,
we see that each Ni is homeomorphic to an I-bundle Σ∩Ni, where the total space of the
associated ∂I-bundle is homeomorphic to R

2. Since there does not exist a free involution
on R

2, we see that the bundle structure on each Ni is trivial, i.e., Ni is homeomorphic to
R

2 × I with each {pt.} × I a fiber of Ni. Hence the lamination T ∪ =1 ∪ · · · ∪ =p extends
to a foliation, say F , of V such that each leaf of F is R

2 × {pt.} ⊂ Ni for some i. Since
T ∪ =1 ∪ · · · ∪ =p is a Reeb lamination, this shows that F is a Reeb foliation. We note
that ∂J ⊂ ∂V and that J is transverse to F . However this is impossible since a Reeb
lamination admits a global normal orientation.
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Appendix C (Proof of Proposition 5.1)

Proposition 5.1. Let L be a link with a diagram E, and B a closed branched surface in
standard position with respect to E. Let L be a lamination fully carried by the branched
surface B ∩ B±, which is a pinching of a system of generating disks by the definition
of standard position. Then there is another system of generating disks E1, . . . , Ep for
B ∩B± such that each leaf of L is isotopic to some Ei in the I-bundle N(B ∩B±) by a
fiber preserving isotopy. For each Ei, the union of the leaves of L which are isotopic to
Ei by a fiber preserving isotopy is a closed subset of B±.

In this appendix, we firstly prove:

Proposition C. Let Z be a 3-ball, and C0 a branched surface in Z. Suppose that C0 is
a pinching of a disjoint union of smooth disks G1 ∪ · · · ∪Gm properly embedded in Z as
below.

(1) Each branch locus intersects ∂Z.
(2) No pinching occurs between subsurfaces of a single component of G1, . . . , Gm, and

hence the image of each Gi is a disk embedded in C0.

Let L be a lamination which is fully carried by C0. Then C0 is a pinching of a disjoint
union of smooth disks R1, . . . , Rn properly embedded in Z such that similar conditions
as (1) and (2) above hold and that each leaf of L is isotopic to some Ri in the I-bundle
N(C0) by a fiber preserving isotopy.

Let H be a (connected) surface in ∂Z such that H is disjoint from the branch loci of C0

and that N(C0)∩H is a union of I-fibers of the I-bundle N(C0). (Note that N(C0)∩H

may be disconnected.) Suppose that Gi∩H consists of at most one arc properly embedded
in H for every i. Then for each leaf l of L, l ∩ H consists of at most one arc properly
embedded in H.

Then we prove Proposition 5.1 by using Proposition C.

For the proof of Proposition C, we modify Lemma 2.5 of [GO] as in the following form.

A variation of Lemma 2.5 of [GO]. Let B∗ be a branched surface possibly with bound-
ary in a 3-manifold M such that cl(M −N(B∗)) is irreducible. Suppose:

(1) B∗ has no disk of contact,
(2) no component of cl(M − N(B∗)) is of the form (disk) × I, where ∂(disk) × I ⊂

∂vN(B0), and (disk) × ∂I ⊂ ∂hN(B0),
(3) ∂hN(B∗) is incompressible in cl(M −N(B∗)) and
(4) there are no monogons in cl(M −N(B∗)).



ESSENTIAL LAMINATIONS AND BRANCHED SURFACES IN THE EXTERIORS OF LINKS53

Suppose B′
∗ is a splitting of B∗. Then we have:

(1) ∂hN(B′
∗) is incompressible in cl(M −N(B′

∗)) and
(2) there are no monogons in cl(M −N(B′

∗)).

Proof of ‘A variation of Lemma 2.5 of [GO]’. We prove only the conclusion (1). The
proof of the conclusion (2) is similar, and we omit it. Since B′

∗ is a splitting of B∗, we
have N(B∗) = N(B′

∗) ∪ J , where J is an I-bundle.
Suppose, for a contradiction, there is a compressing disk D for ∂hN(B′

∗) such that
D ⊂ cl (M−N(B′

∗)). By standard innermost loop and outermost arc arguments, we may
suppose that each component of D ∩ ∂vJ , if exists, is either an essential simple closed
curve in ∂vJ or a fiber of an I-bundle structure of J .

Suppose there exists a simple closed curve component in D ∩ ∂vJ . Then, by taking
a component of D ∩ ∂vJ which is innermost in D, we obtain a disk D′ in D such that
D′∩∂vJ = ∂D′. If D′ ⊂ J , then D′ is a disk of contact in N(B∗), contradicting (1) of the
assumption. If D′ ⊂ cl((M−N(B∗)), then by the condition (3) of the assumption and the
irreducibility of cl(M −N(B∗)), we see that the component of cl(M −N(B∗)) containing
D′ is of the form (disk)× I, where ∂(disk)× I ⊂ ∂vN(B∗), and (disk)× ∂I ⊂ ∂hN(B∗),
contradicting the condition (2) of the assumption.

Suppose each component of D ∩ ∂vJ is a fiber of an I-bundle structure of J . There is
an outermost arc of D∩ ∂vJ on D, and it cuts off from D a monogon in cl(M −N(B∗)),
contradicting the condition (4) of the assumption.

Hence D ∩ ∂vJ = ∅. Then, by the condition (3) of the assumption, we see that ∂D

is contractible in ∂hN(B∗), contradicting the fact that D is a compressing disk. This
completes the proof of the conclusion (1).

Lemma. The branched surface C0 satisfies the assumptions of ‘A variation of Lemma
2.5 of [GO]’.

Proof. Since each branch locus of C0 intersects ∂Z, we see that C0 satisfies the condi-
tions (1), (2) of the assumption of ‘A variation of Lemma 2.5 of [GO]’. This also implies
that each component of ∂hN(C0) is a disk, and this shows that C0 satisfies the condi-
tion (3). Moreover, since no pinching occurs between subsurfaces of a single component
of G1, . . . , Gm, we see that C0 satisfies the condition (4).

Proof of Proposition C.

Claim 1. Let F be a compact 2-manifold fully carried by C0. Then each component E

of F is a disk such that

(1) E is mapped to an embedded disk in C0 by the projection map N(C0) → C0, and
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(2) E ∩H consists of at most one arc properly embedded in H.

Proof. We note that ∂hN(C0) has a component which is a disk properly embedded in Z,
and this shows that Z is not an essential branched surface. However above-mentioned
lemma shows that the branched surface C0 satisfies the other conditions of the definition
of incompressible branched surfaces. Under the conditions proved in Lemma, the argu-
ments in [F-O] show that no component of F is a 2-sphere, and that F is incompressible
in the 3-ball Z. Hence each component of F is a disk. Let E be a component of F .

Subclaim 1. E is mapped to an embedded disk in C0.

Proof. By splitting some components of F if necessary, we may assume that ∂hN(C0) ⊂
F . Suppose for a contradiction that E is not projected to an embedded disk in C0. Then
there is an I-fiber J0 of N(C0) which intersects the disk E at two or more points. Let J ′

be a subinterval of J0 such that ∂J ′ ⊂ E and intJ ′ ∩ E = ∅. If another component E′

of F intersects J ′, then E′ must intersects J ′ at two or more points since E and E′ are
disks properly embedded in the ball Z. Hence, retaking E if necessary, we can assume
without loss of generality that E is the only component of F which intersects J ′. Let
W be the closure of a component of N(C0) − F which contains intJ ′. Since intW is
disjoint from F , W is an I-bundle over a subdisk of E, and E intersects ∂hW . Note that
W∩∂Z �= ∅, otherwise W would contain an annular component of ∂vN(C0), contradicting
the assumption. Let Q′ be a disk bounded by ∂E on ∂Z such that W ∩ ∂Z ⊂ Q′. The
I-fibers of W ∩ ∂Z have endpoints in ∂E. Let J be an outermost one on Q′, and Q

the outermost disk, that is, Q− J is disjoint from W . We remove all the component of
N(C0) − F which are disjoint from intW . This amounts to a splitting operation on the
branched surface C0, and we obtain a new branched surface C ′ in Z. The components
of C ′ intersecting the disk Q are properly embedded disk in Z, and they are parallel
to subdisks of Q. Hence we can isotope Q relative to its boundary so that it gives a
monogon for the branched surface C ′. However this contradicts the fact that C0 does
not admit a monogon, which follows from ‘A variation of Lemma 2.5 of [GO]’mentioned
above. This completes the proof of Subclaim 1.

Recall that H is a surface in ∂Z given in the statement of Proposition C.

Subclaim 2. ∂E ∩H consists of at most one arc properly embedded in H.

Proof. By splitting some components of F if necessary, we may suppose that ∂hN(C0) ⊂
F . Suppose for a contradiction that there exists a component E of F such that ∂E ∩H

consists of more than one arc. Then there is a disk Q in ∂Z such that Q∩E = ∂Q∩∂E = α
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an arc, and that cl (∂Q − α) ⊂ H. Then β denotes the arc cl (∂Q − α). If another
component E′ of F intersects β, then E′ must intersects β at two or more points since E

and E′ are disks properly embedded in the ball Z. Hence, retaking E if necessary, we can
assume without loss of generality that E is the only component of F which intersects β.
Note that every component of F intersecting Int Q is a disk whose boundary is entirely
contained in Int Q. Hence by moving Int Q by an isotopy, we obtain a disk Q′ such that
∂Q′ = ∂Q = α ∪ β and that Int Q′ ∩ F = ∅. Let N(F ) be a sufficiently small regular
neighborhood of F , and NF the union of the closures of several components of N(F )−F

such that NF ⊃ ∂hN(C0) and that NF ⊂ N(B0). Note that Q′ ∩ NF = Q′ ∩ E(= α).
rel. β Since F is fully carried by C0, there is an I-bundle G in Z with base space a compact
2-manifold such that N(C0) = NF ∪ G, where G ∩ N(F ) = G ∩ ∂hN(F ) = ∂hG. Since
each component of ∂vN(C0) is a disk, we may suppose, by innermost loop arguments,
that each component of ∂vN(C0) ∩ Q′ is (if exists) a proper arc which is an I-fiber of
G. Note that these arcs are properly embedded in Q′. Then we take an outermost
component of ∂vN(C0)∩Q′ on Q′ with an outermost disk ∆ such that ∆∩ β = ∅. Note
that ∆ is a monogon in cl (Z − N(C0)), contradicting Subclaim 1 mentioned above.
Hence ∂vN(C0) ∩ Q′ = ∅. Let Q1, . . . , Q2m be duplicated parallel copies of G1, . . . , Gm

in N(C0) such that ∂hN(C0) ⊂ Q1 ∪ · · · ∪ Q2m. Since ∂vN(C0) ∩ Q′ = ∅, there is a
component of ∂hN(C0) which contains the arc α entirely. Hence Qk contains α entirely
for some 1 ≤ k ≤ 2m. Remember that the subarc β of ∂Q′′ connects distinct components
of ∂E ∩ H. These arcs are contained also in ∂Qk since the surface Hj is disjoint from
the branch loci of C0. Hence ∂Qk intersects H in two or more arcs. This contradicts the
assumption, and this completes the proof of Subclaim 2.

Subclaims 1 and 2 complete the proof of Claim 1.

For the definition of a foliation which is a thickening of a lamination, see Definition 2.1
of [GO]. Let F be a foliation on N(C0) which is a thickening of L. Recall that C0 is a
pinching of the disks G1, . . . , Gm. We may suppose, by exchanging suffix if necessary,
that G1 is an outermost component of G1, . . . , Gm, i.e., a component of Z−G1 does not
intersect G2 ∪ · · · ∪Gm.

Then there is a component of ∂hN(C0), say R1, which is parallel to G1. By the way of
construction of the thickening F , R1 is a leaf of F . By Reeb stability theorem (see, for
example, Lemma 2.2 of [GO]), we see that the leaves which are close to R1 are parallel
to R1 in N(C0). Let R1 be the union of the leaves of F which are isotopic to R1 by
fiber preserving isotopies in the I-bundle N(C0). Then we see that, by Reeb stability
theorem, R1 is homeomorphic to R1 × I with each R1 × {p} corresponding to a leaf for
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p ∈ [0, 1] and with R1 ×{0} corresponding to R1. Let R′
1 be the leaf of F corresponding

to R1 × {1}. Then we see that R′
1 ∩ ∂hN(C0) is a non-empty union of components

of ∂hN(C0). Let S1, . . . , Sk be the sectors of C0 corresponding to R′
1 ∩ ∂hN(C0). Let

C1 = c=(C0 − (S1 ∪ · · · ∪ Sk)). It is easy to see that C1 is a branched surface.
Let N ′

1 = c=(N(C0)−R1)). Note that N ′
1 ∩R1 = c=(R′

1 − (R′
1 ∩ ∂hN(C0))), and each

component of this is a disk. Let J1 be the union of leaves of F which are isotopic to
a component of c=(R′

1 − (R′
1 ∩ ∂hN(C0))) by fiber preserving isotopies in the I-bundle

N(C0). We see that J1 is homeomorphic to c=(R′
1 − (R′

1 ∩ ∂hN(C0))) × [0, 1) with each
c=(R′

1 − (R′
1 ∩ ∂hN(C0))) × {p} corresponding to a union of leaves for p ∈ [0, 1) and

with c=(R′
1 − (R′

1 ∩ ∂hN(C0))) × {0} corresponding to c=(R′
1 − (R′

1 ∩ ∂hN(C0))). Let
N1 = N ′

1−J1. We note that F∩N1 is a foliation on N1, that N1 is a fibered neighborhood
of the branched surface C1 above, and that each fiber of N1 intersects F∩N1 transversely.

Claim 2. There exists a system of disjoint union of disks R2, . . . , Rn properly embedded
in Z such that

(1) each leaf of L ∩ N1 is isotopic to some Ri by a fiber preserving isotopy in the
I-bundle N1 and

(2) no pinching occurs between subsurfaces of a single component of R2, . . . , Rn, i.e.,
the image of each Ri is a disk embedded in C1 and

(3) for the surface H in Proposition C, Ri ∩H consists of at most one arc properly
embedded in H for each i.

Proof. Recall that C0 is a pinching of the disks G1, . . . , Gm. Let Q1, . . . , Q2m be dupli-
cated parallel copies of G1, . . . , Gm in N(C0) such that ∂hN(C0) ⊂ Q1∪· · ·∪Q2m. For a
component ρ of ∂(∂vN(C0)), Q(ρ) denotes the component of Q1, . . . , Q2m which contains
ρ. Recall that S1, . . . , Sk are the sectors of C0 corresponding to R′

1 ∩∂hN(C0). It is easy
to see that c=(C0 − S1) is a branched surface, say C ′

1. We show that C ′
1 is a pinching of

disjoint union of disks each component of which satisfies similar conditions as those of of
the conclusion of Claim 2. We will see repetitions of the following arguments complete the
proof of Claim 2. Let ρ1, . . . , ρp be the components of the frontier in R′

1 of the component
of ∂hN(C0) corresponding to S1. Then let ρ′i be the component of ∂vN(C0) ∩ ∂hN(C0)
such that ρi and ρ′i are contained in the same component of ∂vN(C0). Then Q(ρ′i) is cut
into two disks by ρ′i. We denote by Q′(ρ′i) the closure of the component of Q(ρ′i) − ρ′i
such that a small neighborhood of ρ′i in Q′(ρ′i) is contained in ∂hN(C0). Note that Q(ρ′i)
does not intersect the I-fibers of N(B) which intersect the interior of the sector S1, oth-
erwise there would be an I-fiber of N(B) intersecting ρi such that Q(ρ′i) intersects it at
two or more points, contradicting the assumption. Let G′

1, . . . , G
′
n be the components
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of G1, . . . , Gm whose subdisks are carried by S1, G′′
1 , . . . , G

′′
r the disks obtained from

G′
1, . . . , G

′
n by removing the subdisks carried by S1 and taking the closures.

We can naturally join the components of G′′
1 , . . . , G

′′
r and copies of Q′(ρ′1), . . . , Q

′(ρ′p)
by using components of ∂vN(C0) to obtain a system of (not necessarily mutually disjoint)
surfaces carried by C ′

1. Then we perturb the surfaces to be in a general position with
keeping them to be carried by C ′

1, and apply suitable cut and paste operations to obtain
a compact 2-manifold F ′

1 fully carried by C ′
1. We note that F ′

1 ∪ G1 is fully carried by
C0. Hence by Claim 1 mentioned above, we see that each component of F ′

1∪G1 is a disk
satisfying similar conditions as those fo the conclusion of Claim 2. It is easy to see that
the above arguments can be repeated to give the conclusion of Claim 2.

Since the number of the sectors of C0 is finite, we see that the above argument can be
repeated to give Proposition C.

Proof of Proposition 5.1. Let H = B± ∩ (crossing balls). Note that H is a disjoint union
of disks in ∂B±. Then let H ′ = cl(H − N(L)), where L is the link. Then we apply
Proposition C to L with B±, D1, . . . , Dm and H ′ regarded as Z, G1, . . . , Gm and H

respectively. Then we obtain a system of mutually disjoint disks {E1, . . . , Ep} properly
embedded in B± such that; B± is a pinching of E1 ∪ · · · ∪Ep, where no pinching occurs
between subsurfaces of a single component of E1, . . . , Ep,; each leaf of L± is isotopic to
some Ei in the I-bundle N(B ∩ B±) by a fiber preserving isotopy, and ; the boundary
of each Ei does not meet the same side of a bubble more than once. These show that
E1, . . . , Ep is a system of generating disks for B ∩B±.

Let Ei be the union of leaves of L which are isotopic to Ei by fiber preserving isotopies
in the I-bundle N(C0). Let F be a foliation on N(C0) which is a thickening of L, and
E ′

i the union of the leaves of F which are isotopic to Ei by fiber preserving isotopies
in the I-bundle N(C0). Then we have Ei = E ′

i ∩ L. By Reeb stability theorem, E ′
i is

homeomorphic to Ei × I with each Ei × {p} corresponding to a leaf for p ∈ [0, 1]. Since
L is a closed set, this shows that Ei is a closed subset of B±. This completes the proof
of Proposition 5.1.

Appendix D

In general, let ψ : F → F be a pseudo-Anosov homeomorphism of a surface F , and ν

the stable lamination of ψ. Let M be the mapping torus of ψ, i.e., M is obtained from
F × I by identifying F × {1} and F × {0} by the homeomorphism (x, 1) → (ψ(x), 0).
Then we can obtain a lamination λ in M as the image of ν × I in F . We call λ the
mapping torus of the stable lamination ν.
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In this appendix, we will show that the essential lamination of Example 6.1 is the
mapping torus of a stable lamination of the pseudo-Anosov monodromy of the surface
bundle structure of E(L).

We will demonstrate this by a picture of the branched surface obtained from B by
cutting along a minimal genus Seifert surface of the figure eight knot. For the convenience
of drawing, we slightly modify the diagram E as in Figure D-1 (a), and take a minimal
genus Seifert surface S drawn for E as in Figure D-1 (b). It is directly observed that
B ∩ S is a train track τ∗ as in Figure D-1 (b). Let D1, D2, D3, D4 be crossing balls for
E. Then Di ∩B is a saddle-shaped disk, say Ri, in Di as in Figure 2.1. See Figure D-1
(a).

Figure D − 1

Here we may suppose that R1 ∩ S (R2 ∩ S resp.) is a diagonal line of the square R1

(R2 resp.) and that R3 ∩ S = ∅, R4 ∩ S = ∅. Then we may take a “straight” arc σ in B

joining a vertex of R3 and a vertex of R4 as in Figure D-1 (a). As directly observed from
Figure D-1 (a), there is a hexagon H in B such that H is obtained from R3 ∪ σ ∪ R4

by expanding σ in B and that H ∩ S consists of two edges of H contained in edges of
τ∗. Note that among the other four edges of H two are contained in edges of τ+ and the
other two edges are contained in τ−. See Figure D-2.

Figure D − 2

It is also directly observed from Figure 6.1 and Figure D-2 that cl(τ±− (τ∗∪R1∪R2∪
H)) consists of two Y -shaped 1-complexes, say Y1 and Y2. See Figure D-2 (b). Recall
that B ∩B+ (B ∩B− resp.) is a union of three disks D+

1 , D+
2 , D+

3 (D−
1 , D−

2 , D−
3 resp.)

as in Figure D-3 (a) (Figure D-4 (a) resp.). It is easy to see that B ∩B+ (B ∩B− resp.)
is homeomorphic to the branched surface of Figure D-3 (b) (Figure D-4 (b) resp.). Let
B� be the branched surface obtained from B by cutting along S. Let R+

i , R−
i be the

four triangles obtained by cutting the saddle disk Ri along the arc τ∗ ∩ Ri such that
R+

i ⊂ B+ and R−
i ⊂ B−. Note that the branched surface B� can be obtained also from

the disjoint union of cl((B ∩ B+) − H) and cl((B ∩ B−) − H) by pasting them along
Y1 ∪ Y2 ∪ σ and attaching R+

1 , R−
1 , R+

2 , R−
2 , H along the subarcs of their boundaries in

the bubbles. This can be done in an abstract way as in Figure D-5 to obtain the branched
surface of Figure D-6. It is easy to see from Figure D-6 that any surface carried by B� is
homeomorphic to either S1 × [0, 1] or R × [0, 1], where a neighborhood of one boundary
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component is contained in the +-side of S and a neighborhood of the other boundary
component is contained in the −-side of S.

Figure D − 3 Figure D − 4 Figure D − 5

Now we consider the affine lamination associated to the system of solutions

(α+
1 , α

+
2 , α

+
3 , α

−
1 , α

−
2 , α

−
3 ) = (

√
5 + 1
2

, 1,
√

5 + 1
2

, 1,
√

5− 1
2

, 1)

of the system of equations in Example 6.1. Note that this solution gives systems of
admissible weights on B ∩ B+ and B ∩ B− which agree at Y1 ∪ Y2 and gives a system
of admissible weights on the branched surface B�. It is directly seen that the system
of admissible weights induces two systems of admissible weights on τ∗ as in Figure D-7,
each from boundary components of B�. It is easy to see that these systems of weights
are projectively equivalent. In fact these weights give a stable lamination of the pseudo-
Anosov monodromy of the surface bundle structure of E(L). Hence the above lamination
is a mapping torus of the stable lamination.

Figure D − 6a Figure D − 6b F igure D − 7

Appendix E

We will claim that the branched surface of Example 6.2 is an essential branched surface
obtained by the first author in [B3].

The picture of Figure E-1 (a) is borrowed from Figure 3 of [B3]. Note that the
diagram of a knot in Figure E-1 (a) is a non-alternating diagram of 61. In [B3], it is
shown that the branched surface of Figure E-1 (a) is an essential branched surface in the
knot complement. If we put the branched surface “tamely ” with respect to the diagram,
then the intersection of the branched surface and the projection 2-sphere will look as in
Figure E-1 (b). Then we move a part of the knot as the broken line in Figure E-1 (b).
Then it is directly observed that the image of the branched surface by this deformation
is actually the branched surface of Example 6.2.

Figure E − 1

References
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